D. Russo, N. V. Estrin, D. A. Martí, M. A. Roitberg, and A. E. , pH-Dependent Conformational Changes in Proteins and Their Effect on Experimental pKas: The Case of Nitrophorin 4, PLoS Comput. Biol, vol.8, p.1002761, 2012.

T. K. Harris and G. J. Turner, Structural Basis of Perturbed pKa Values of Catalytic Groups in Enzyme Active Sites, IUBMB Life, vol.53, pp.85-98, 2002.

L. F. Franco and P. D. Pessôa-filho, On the solubility of proteins as a function of pH: Mathematical development and application. Fluid Phase Equilibr, vol.306, pp.242-250, 2011.

I. K. Jordan, F. A. Kondrashov, I. A. Adzhubei, Y. I. Wolf, E. V. Koonin et al., A universal trend of amino acid gain and loss in protein evolution, Nature, vol.433, pp.633-638, 2005.

G. M. Ullmann and E. Bombarda, Protein Modelling

L. Banci, I. Bertini, C. Luchinat, and M. S. Viezzoli, pH-dependent properties of SOD studied through mutants on Lys-136, Inorg. Chem, vol.32, pp.1403-1406, 1993.

D. O. O'keefe, V. Cabiaux, S. Choe, D. Eisenberg, and R. J. Collier, pH-dependent insertion of proteins into membranes: B-chain mutation of diphtheria toxin that inhibits membrane translocation, Glu-349--Lys, Proc. Natl. Acad. Sci, vol.89, pp.6202-6206, 1992.

E. L. Digiammarino, A. S. Lee, C. Cadwell, W. Zhang, B. Bothner et al., A novel mechanism of tumorigenesis involving pHdependent destabilization of a mutant p53 tetramer, Nat. Struct. Biol, vol.9, pp.12-16, 2001.

J. Horng, J. Cho, and D. P. Raleigh, Analysis of the pH-dependent Folding and Stability of Histidine Point Mutants Allows Characterization of the Denatured State and Transition State for Protein Folding, J. Mol. Biol, vol.345, pp.163-173, 2005.

V. Ormazabal, F. A. Zuiga, E. Escobar, C. Aylwin, A. Salas-burgos et al., Histidine Residues in the Na+-coupled Ascorbic Acid Transporter-2 (SVCT2) Are Central Regulators of SVCT2 Function, Modulating pH Sensitivity, Transporter Kinetics, Na+ Cooperativity, Conformational Stability, and Subcellular Localization, J. Biol. Chem, vol.285, pp.36471-36485, 2010.

M. Del-carmen-marín, D. Agathangelou, Y. Orozco-gonzalez, A. Valentini, Y. Kato et al., Fluorescence Enhancement of a Microbial Rhodopsin via Electronic Reprogramming, J. Am. Chem. Soc, vol.141, pp.262-271, 2018.

O. A. Sineshchekov, V. D. Trivedi, J. Sasaki, and J. L. Spudich, Photochromicity of Anabaena Sensory Rhodopsin, an Atypical Microbial Receptor with a cis-Retinal Lightadapted Form, J. Biol. Chem, vol.280, pp.14663-14668, 2005.

S. Tahara, Y. Kato, H. Kandori, and H. Ohtani, PH-Dependent Photoreaction Pathway of the All-Trans Form of Anabaena Sensory Rhodopsin, J. Phys. Chem. B, vol.117, pp.2053-2060, 2013.

R. Rozin, A. Wand, K. Jung, S. Ruhman, and M. Sheves, pH Dependence of Anabaena Sensory Rhodopsin: Retinal Isomer Composition, Rate of Dark Adaptation, and Photochemistry, J. Phys. Chem. B, vol.118, pp.8995-9006, 2014.

L. Shi, S. R. Yoon, A. G. Bezerra, K. Jung, and L. S. Brown, Cytoplasmic Shuttling of Protons in Anabaena Sensory Rhodopsin: Implications for Signaling Mechanism, J. Mol. Biol, vol.358, pp.686-700, 2006.

S. Hayashi, E. Tajkhorshid, E. Pebay-peyroula, A. Royant, E. M. Landau et al., Structural Determinants of Spectral Tuning in Retinal ProteinsBacteriorhodopsin vs Sensory Rhodopsin II, J. Phys. Chem. B, vol.105, pp.10124-10131, 2001.

D. Bucher, L. Guidoni, and U. Rothlisberger, The Protonation State of the Glu-71/Asp-80 Residues in the KcsA Potassium Channel: A First-Principles QM/MM Molecular Dynamics Study, Biophys. J, vol.93, pp.2315-2324, 2007.

R. Rangarajan, J. F. Galan, G. Whited, and R. R. Birge, Mechanism of Spectral Tuning in Green-Absorbing Proteorhodopsin, Biochemistry, vol.46, pp.12679-12686, 2007.

J. S. Frähmcke, M. Wanko, P. Phatak, M. A. Mroginski, and M. Elstner, The Protonation State of Glu181 in Rhodopsin Revisited: Interpretation of Experimental Data on the Basis of QM/MM Calculations, J. Phys. Chem. B, vol.114, pp.11338-11352, 2010.

S. Vanni, M. Neri, I. Tavernelli, and U. Rothlisberger, A Conserved Protonation-Induced Switch can Trigger Ionic-Lock Formation in Adrenergic Receptors, J. Mol. Biol, vol.397, pp.1339-1349, 2010.

I. Grante, A. Actins, and L. Orola, Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study, Spectrochim. Acta A, vol.129, pp.326-332, 2014.

T. Driant, F. Nachon, C. Ollivier, P. Renard, and E. Derat, On the Influence of the Protonation States of Active Site Residues on AChE Reactivation: A QM/MM Approach, vol.18, pp.666-675, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01644385

M. Molakarimi, A. Mohseni, M. Taghdir, Z. Pashandi, M. A. Gorman et al., QM/MM simulations provide insight into the mechanism of bioluminescence triggering in ctenophore photoproteins, PLOS ONE, vol.12, pp.1-19, 2017.

S. Gozem, H. L. Luk, I. Schapiro, and M. Olivucci, Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores, Chem. Rev, vol.117, pp.13502-13565, 2017.

E. Iijima, M. P. Gleeson, M. Unno, and S. Mori, QM/MM Investigation for Protonation States in a Bilin Reductase PcyA-Biliverdin IX? Complex, ChemPhysChem, vol.19, pp.1809-1813, 2018.

B. Ling, X. Wang, H. Su, R. Liu, and Y. Liu, Protonation state and fine structure of the active site determine the reactivity of dehydratase: hydration and isomerization of ?-myrcene catalyzed by linalool dehydratase/isomerase from Castellaniella defragrans, Phys. Chem. Chem. Phys, vol.20, pp.17342-17352, 2018.

J. M. Swails and A. E. Roitberg, Enhancing Conformation and Protonation State Sampling of Hen Egg White Lysozyme Using pH Replica Exchange Molecular Dynamics, J. Chem. Theory Comput, vol.8, pp.4393-4404, 2012.

Y. Huang, W. Chen, J. A. Wallace, and J. Shen, All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water, J. Chem. Theory Comput, vol.12, pp.5411-5421, 2016.

M. Wanko, M. Hoffmann, P. Strodel, A. Koslowski, W. Thiel et al., Calculating Absorption Shifts for Retinal Proteins: Computational Challenges, J. Phys. Chem. B, vol.109, pp.3606-3615, 2005.

K. Fujimoto, J. Hasegawa, S. Hayashi, S. Kato, and H. Nakatsuji, Mechanism of color tuning in retinal protein: SAC-CI and QM/MM study, Chem. Phys. Lett, vol.414, pp.239-242, 2005.

A. Altun, S. Yokoyama, and K. Morokuma, Spectral Tuning in Visual Pigments: An ONIOM(QM:MM) Study on Bovine Rhodopsin and its Mutants, J. Phys. Chem. B, vol.112, p.18473437, 2008.

G. Tomasello, G. Olaso-gonzález, P. Altoè, M. Stenta, L. Serrano-andrés et al., Electrostatic Control of the Photoisomerization Efficiency and Optical Properties in Visual Pigments: On the Role of Counterion Quenching, J. Am. Chem. Soc, vol.131, pp.5172-5186, 2009.

R. Rajamani, Y. Lin, and J. Gao, The opsin shift and mechanism of spectral tuning in rhodopsin, J. Comput. Chem, vol.32, pp.854-865, 2011.

J. Hasegawa, K. J. Fujimoto, and T. Kawatsu, A Configuration Interaction Picture for a Molecular Environment Using Localized Molecular Orbitals: The Excited States of Retinal Proteins, J. Chem. Theory Comput, vol.8, pp.4452-4461, 2012.

P. Campomanes, M. Neri, B. A. Horta, U. F. Röhrig, S. Vanni et al., Origin of the Spectral Shifts among the Early Intermediates of the Rhodopsin Photocycle, J. Am. Chem. Soc, vol.136, pp.3842-3851, 2014.

R. Guareschi, O. Valsson, C. Curutchet, B. Mennucci, and C. Filippi, Electrostatic versus Resonance Interactions in Photoreceptor Proteins: The Case of Rhodopsin, J. Phys. Chem. Lett, vol.7, pp.4547-4553, 2016.

K. Yanai, K. Ishimura, A. Nakayama, and J. Ya-hasegawa, First-Order Interacting Space Approach to Excited-State Molecular Interaction: Solvatochromic Shift of p-Coumaric Acid and Retinal Schiff Base, J. Chem. Theory Comput, vol.14, pp.3643-3655, 2018.

L. Pedraza-gonzález, L. D. Vico, M. Del-carmen-mariín, F. Fanelli, and M. Olivucci, Automatic Rhodopsin Modeling with Chromophore Cavity Generation, Ionization State Selection, and External Counterion Placement, J. Chem. Theory Comput, vol.15, pp.3134-3152, 2019.

A. Udvarhelyi, M. Olivucci, and T. Domratcheva, Role of the Molecular Environment in Flavoprotein Color and Redox Tuning: QM Cluster versus QM/MM Modeling, J. Chem. Theory Comput, vol.11, pp.3878-3894, 2015.

E. Bombarda and G. M. Ullmann, pH-Dependent pKa Values in Proteins -A Theoretical Analysis of Protonation Energies with Practical Consequences for Enzymatic Reactions

, J. Phys. Chem. B, vol.114, 1994.

G. M. Ullmann and E. Bombarda, pKa values and redox potentials of proteins. What do they mean?, Biol. Chem, p.394, 2013.

E. Pieri, V. Ledentu, M. Huix-rotllant, and N. Ferré, Sampling the protonation states: the pH-dependent UV absorption spectrum of a polypeptide dyad, Phys. Chem. Chem. Phys, vol.20, pp.23252-23261, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02091888

L. Vogeley, O. A. Sineshchekov, V. D. Trivedi, J. Sasaki, J. L. Spudich et al., Anabaena Sensory Rhodopsin: A Photochromic Color Sensor at 2.0 . Science, vol.306, pp.1390-1393, 2004.

D. A. Case, R. M. Betz, D. S. Cerutti, T. E. Cheatham, T. A. Darden et al., , 2016.

J. M. Swails, D. M. York, and A. E. Roitberg, Constant pH Replica Exchange Molecular Dynamics in Explicit Solvent Using Discrete Protonation States: Implementation, Testing, and Validation, J. Chem. Theory Comput, vol.10, pp.1341-1352, 2014.

J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, and K. E. Hauser, Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, J. Chem. Theory Comput, vol.11, pp.3696-3713, 2015.

S. Hayashi, E. Tajkhorshid, and K. Schulten, Structural Changes during the Formation of Early Intermediates in the Bacteriorhodopsin Photocycle, Biophys. J, vol.83, pp.1281-1297, 2002.

J. J. Stewart, Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters, J. Mol. Mod, vol.19, pp.1-32, 2013.

D. R. Armstrong, R. Fortune, P. G. Perkins, and J. J. Stewart, Molecular orbital theory for the excited states of transition metal complexes, J. Chem. Soc., Farad. Trans, vol.2, p.1839, 1972.

J. Stewart and . Mopac2016, Stewart Computational Chemistry

M. Barbatti, M. Ruckenbauer, F. Plasser, J. Pittner, G. Granucci et al., a surface-hopping program for nonadiabatic molecular dynamics, WIRES Computat. Mol. Sci, vol.4, pp.26-33, 2014.

M. Barbatti, G. Granucci, M. Ruckenbauer, F. Plasser, R. Crespo-otero et al., NEWTON-X: a package for Newtonian dynamics close to the crossing seam, 2015.

F. Melaccio, M. Del-carmen-marín, A. Valentini, F. Montisci, S. Rinaldi et al., Automatic Rhodopsin Modeling as a Tool for HighThroughput Computational Photobiology, J. Chem. Theory Comput, vol.12, pp.6020-6034, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409070

J. Finley, P. Malmqvist, B. O. Roos, and L. Serrano-andrés, The multi-state CASPT2 method, Chem. Phys. Lett, vol.288, pp.299-306, 1998.

M. Stenrup, E. Pieri, V. Ledentu, and N. Ferré, pH-Dependent absorption spectrum of a protein: a minimal electrostatic model of Anabaena sensory rhodopsin, Phys. Chem. Chem. Phys, vol.19, pp.14073-14084, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01774207

B. Pfaff, J. Darrington, J. Stover, and . Pspp, , 2017.

J. N. Weiss, The Hill equation revisited: uses and misuses, The FASEB Journal, vol.11, pp.835-841, 1997.

B. Demoulin, M. M. El-tahawy, A. Nenov, M. Garavelli, and T. Le-bahers, Intramolecular photo-induced charge transfer in visual retinal chromophore mimics: electron density-based indices at the TD-DFT and post-HF levels, Theor. Chem. Acc, p.96, 2016.

J. L. Knudsen, A. Kluge, A. V. Bochenkova, H. V. Kiefer, and L. H. Andersen, The UV-visible action-absorption spectrum of all-trans and 11-cis protonated Schiff base retinal in the gas Phase, Phys. Chem. Chem. Phys, vol.20, pp.7190-7194, 2018.

S. Wang, R. A. Munro, L. Shi, I. Kawamura, T. Okitsu et al., Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein, Nat. Methods, vol.10, p.10071012, 2013.