M. H. Montane and B. Menand, TOR inhibitors: from mammalian outcomes to pharmacogenetics in 349 plants and algae, Journal of experimental botany, 2019.

M. Laplante and D. M. Sabatini, mTOR signaling in growth control and disease, pp.274-351, 2012.

R. A. Saxton and D. M. Sabatini, mTOR Signaling in Growth, Metabolism, and Disease, vol.353, pp.960-976, 2017.

P. Crozet, L. Margalha, A. Confraria, A. Rodrigues, C. Martinho et al., , p.355

. Gonzalez, Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases, Frontiers in plant science, vol.5, p.190, 2014.

K. M. Jamsheer, B. N. Shukla, S. Jindal, N. Gopan, C. T. Mannully et al., The FCS-like zinc finger 358 scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically 359 disordered regions, The Journal of biological chemistry, vol.293, pp.13134-13150, 2018.

P. Sanz, R. Viana, and M. A. Garcia-gimeno, AMPK in Yeast: The SNF1 (Sucrose Non-fermenting, vol.1, p.361

. Protein-kinase-complex, Experientia supplementum, pp.353-374, 2012.

S. J. Ricoult and B. D. Manning, The multifaceted role of mTORC1 in the control of lipid metabolism, 363 EMBO reports, vol.14, pp.242-251, 2013.

T. I. Jeon and T. F. Osborne, SREBPs: metabolic integrators in physiology and metabolism, Trends in 365 endocrinology and metabolism: TEM, vol.23, pp.65-72, 2012.

D. Menon, D. Salloum, E. Bernfeld, E. Gorodetsky, A. Akselrod et al.,

D. A. Deberardinis and . Foster, Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid, The Journal of biological chemistry, vol.368, pp.6303-6311, 2017.

M. S. Yoon, Y. Sun, E. Arauz, Y. Jiang, and J. Chen, Phosphatidic acid activates mammalian target of 370 rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an 371 allosteric effect, The Journal of biological chemistry, vol.286, pp.29568-29574, 2011.

G. Lee, Y. Zheng, S. Cho, C. Jang, C. England et al.,

E. Chavez, M. Zhang, A. Isik, N. E. Couvillon, T. K. Dephoure et al.,

J. Cantley and . Blenis, Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2

. Signaling, Cell, pp.1545-1558, 2017.

A. Arif, F. Terenzi, A. A. Potdar, J. Jia, J. Sacks et al.,

S. C. Chen, G. Kozma, P. L. Thomas, and . Fox, EPRS is a critical mTORC1-S6K1 effector that influences adiposity 378 in mice, Nature, pp.357-361, 2017.

M. F. Wipperman, D. C. Montrose, A. M. Gotto, and D. P. Hajjar,

, Metabolic Rheostat for Regulating Adipose Tissue Function and Cardiovascular Health, The American 381 journal of pathology, vol.189, pp.492-501, 2019.

S. , Lipid droplet mobilization: The different ways to loosen the purse strings, Biochimie, vol.383, issue.120, pp.17-27, 2016.

T. J. Van-dam, F. J. Zwartkruis, J. L. Bos, and B. Snel, Evolution of the TOR pathway, Journal of molecular 385 evolution, vol.73, pp.209-220, 2011.

M. H. Montané and B. Menand, ATP-competitive mTOR kinase inhibitors delay plant growth by 387 triggering early differentiation of meristematic cells but no developmental patterning change, Journal 388 of experimental botany, vol.64, pp.4361-4374, 2013.

L. Prioretti, L. Avilan, F. Carriere, M. Montane, B. Field et al., The 390 inhibition of TOR in the model diatom Phaeodactylum tricornutum promotes a get-fat growth regime, p.391

, Biofuels and Bioproducts, vol.26, pp.265-274, 2017.

J. L. Crespo, S. Diaz-troya, and F. J. Florencio, Inhibition of target of rapamycin signaling by rapamycin in 393 the unicellular green alga Chlamydomonas reinhardtii, Plant Physiol, vol.139, pp.1736-1749, 2005.

B. Menand, T. Desnos, L. Nussaume, F. Berger, D. Bouchez et al., Expression and 395 disruption of the Arabidopsis TOR (target of rapamycin) gene, Proceedings of the National Academy of 396 Sciences of the United States of America, vol.99, pp.6422-6427, 2002.

C. Caldana, Y. Li, A. Leisse, Y. Zhang, L. Bartholomaeus et al., , p.398

, Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling 399 growth in Arabidopsis thaliana, The Plant journal : for cell and molecular biology, vol.73, pp.897-909, 2013.

D. Y. Lee and O. Fiehn, Metabolomic response of Chlamydomonas reinhardtii to the inhibition of target 401 of rapamycin (TOR) by rapamycin, Journal of microbiology and biotechnology, vol.23, pp.923-931, 2013.

S. Imamura, Y. Kawase, I. Kobayashi, T. Sone, A. Era et al.,

. Tanaka, Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae, 404 Plant molecular biology, vol.89, pp.309-318, 2015.

J. B. Madeira, C. A. Masuda, C. M. Maya-monteiro, G. S. Matos, M. Montero-lomeli et al., , p.406

. Morais, TORC1 inhibition induces lipid droplet replenishment in yeast, Molecular and cellular biology, vol.407, pp.737-746, 2015.

S. Imamura, Y. Kawase, I. Kobayashi, M. Shimojima, H. Ohta et al., TOR (target of rapamycin) is 409 a key regulator of triacylglycerol accumulation in microalgae, Plant signaling & behavior, vol.11, p.1149285, 2016.

S. Mukaida, T. Ogawa, K. Ohishi, Y. Tanizawa, D. Ohta et al., The effect of rapamycin on 412 biodiesel-producing protist Euglena gracilis, Bioscience, biotechnology, and biochemistry, vol.80, pp.1223-1229, 2016.

V. Roustan and W. Weckwerth, Quantitative Phosphoproteomic and System-Level Analysis of TOR 415

, Inhibition Unravel Distinct Organellar Acclimation in Chlamydomonas reinhardtii, Frontiers in plant 416 science, vol.9, p.1590, 2018.

S. A. Kang, M. E. Pacold, C. L. Cervantes, D. Lim, H. J. Lou et al., , p.418

D. M. Sabatini, mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin, p.419

, Science, p.1236566, 2013.

J. Juppner, U. Mubeen, A. Leisse, C. Caldana, A. Wiszniewski et al., The 421 target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering 422 carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells, The Plant journal : for cell 423 and molecular biology, vol.93, pp.355-376, 2018.

V. Roustan, S. Bakhtiari, P. Roustan, and W. Weckwerth, Quantitative in vivo phosphoproteomics 425 reveals reversible signaling processes during nitrogen starvation and recovery in the biofuel model 426 organism Chlamydomonas reinhardtii, vol.10, p.280, 2017.

T. Dobrenel, E. Mancera-martínez, C. Forzani, M. Azzopardi, M. Davanture et al., , p.428

J. Schepetilnikov, O. Chicher, M. Langella, C. Zivy, L. A. Robaglia et al., , p.429

T. Arabidopsis and . Kinase, Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic 430

, Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6, Frontiers in plant 431 science, vol.7, p.1611, 2016.

J. Serfontein, R. E. Nisbet, C. J. Howe, and P. J. De-vries, Evolution of the TSC1/TSC2-TOR signaling 433 pathway, vol.3, p.49, 2010.

E. G. Werth, E. W. Mcconnell, I. Lianez, Z. Perrine, J. L. Crespo et al., 435 Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii 436 phosphoproteome: from known homologs to new targets, vol.221, pp.247-260, 2019.

M. M. Mahfouz, S. Kim, A. J. Delauney, and D. P. Verma, Arabidopsis TARGET OF RAPAMYCIN interacts 438 with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals, The Plant 439 cell, vol.18, pp.477-490, 2006.

Y. Nakamura, R. Koizumi, G. Shui, M. Shimojima, M. R. Wenk et al., Arabidopsis lipins 441 mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation, vol.106, pp.20978-443, 2009.

N. Arora, P. T. Pienkos, V. Pruthi, K. M. Poluri, and M. T. Guarnieri, Leveraging algal omics to reveal 445 potential targets for augmenting TAG accumulation, Biotechnology advances, vol.36, pp.1274-1292, 2018.

M. T. Guarnieri, A. Nag, S. Yang, and P. T. Pienkos, Proteomic analysis of Chlorella vulgaris: potential 447 targets for enhanced lipid accumulation, Journal of proteomics, vol.93, pp.245-253, 2013.

M. T. Guarnieri, A. Nag, S. L. Smolinski, A. Darzins, M. Seibert et al., Examination of 449 triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an 450 unsequenced microalga, PloS one, vol.6, p.25851, 2011.

J. Van-leene, C. Han, A. Gadeyne, D. Eeckhout, C. Matthijs et al.,

B. Van-de-slijke, E. Van-de-cotte, M. Stes, V. Van-bel, F. Storme et al.,

D. Smet and G. D. Jaeger, Capturing the phosphorylation and protein interaction landscape of the plant 454 TOR kinase, Nature plants, vol.5, pp.316-327, 2019.

C. P. Craddock, N. Adams, J. T. Kroon, F. M. Bryant, P. J. Hussey et al., Cyclin-456 dependent kinase activity enhances phosphatidylcholine biosynthesis in Arabidopsis by repressing 457 phosphatidic acid phosphohydrolase activity, The Plant journal : for cell and molecular biology, vol.89, pp.3-14, 2017.

M. Kajikawa, Y. Sawaragi, H. Shinkawa, T. Yamano, A. Ando et al., , p.460

. Fukuzawa, Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation 461 regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency, Plant Physiol, vol.168, pp.752-764, 2015.

M. Schulz-raffelt, V. Chochois, P. Auroy, S. Cuine, E. Billon et al., , p.464

, Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK 465 kinase, Biotechnol Biofuels, vol.9, p.55, 2016.

A. Barrada, M. Djendli, T. Desnos, R. Mercier, C. Robaglia et al., A TOR-YAK1 467 signaling axis controls cell cycle, meristem activity and plant growth in Arabidopsis, Development, vol.146, p.468, 2019.

I. Couso, B. S. Evans, J. Li, Y. Liu, F. Ma et al., Synergism between, p.470

, Inositol Polyphosphates and TOR Kinase Signaling in Nutrient Sensing, Growth Control, and Lipid 471 Metabolism in Chlamydomonas, The Plant cell, vol.28, pp.2026-2042, 2016.

H. Shinkawa, M. Kajikawa, Y. Nomura, M. Ogura, Y. Sawaragi et al.,

Y. Sugiyama, Y. Ishihama, H. Kanesaki, H. Yoshikawa, and . Fukuzawa, Algal Protein Kinase, Triacylglycerol 474 Accumulation Regulator1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen Imbalanced 475 Conditions, Plant & cell physiology, 2019.

M. E. Perez-perez, I. Couso, and J. L. Crespo, The TOR Signaling Network in the Model Unicellular Green 477 Alga Chlamydomonas reinhardtii, p.7, 2017.

I. Couso, M. E. Perez-perez, E. Martinez-force, H. S. Kim, Y. He et al., Autophagic 479 flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas, Journal of experimental botany, vol.480, pp.1355-1367, 2018.

, scale 495 bars 10 µm (modified with permission from Imamura et al. 2015). D) Nile Red staining 496 of lipid droplets in Euglena gracilis after five days of treatment with ethanol (left) or 497 rapamycin 1 µM (right), scale bars 20 µm, yeast FKBP12 after 48h of treatment with DMSO (left) or rapamycin 1 µM (right), 2016.

, Model of effectors of TOR-dependent regulation of growth and lipid homeostasis