D. N. Lorenzo, ?II-spectrin promotes mouse brain connectivity through stabilizing axonal plasma membranes and enabling axonal organelle transport, Proc. Natl. Acad. Sci. U.S.A, 2019.

B. Machnicka, Spectrins: A structural platform for stabilization and activation of membrane channels, receptors and transporters, Biochim. Biophys. Acta, vol.1838, pp.620-634, 2014.

V. Bennett and D. N. Lorenzo, An adaptable spectrin/ankyrin-based mechanism for long-range organization of plasma membranes in vertebrate tissues, Curr. Top. Membr, vol.77, pp.143-184, 2016.

V. T. Marchesi and E. Steers, Selective solubilization of a protein component of the red cell membrane, Science, vol.159, pp.203-204, 1968.

T. J. Byers and D. Branton, Visualization of the protein associations in the erythrocyte membrane skeleton, Proc. Natl. Acad. Sci. U.S.A, vol.82, pp.6153-6157, 1985.

S. C. Liu, L. H. Derick, and J. Palek, Visualization of the hexagonal lattice in the erythrocyte membrane skeleton, J. Cell Biol, vol.104, pp.527-536, 1987.

L. Pan, R. Yan, W. Li, and K. Xu, Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton, Cell Reports, vol.22, pp.1151-1158, 2018.

J. W. Brown, The physiological molecular shape of spectrin: A compact supercoil resembling a Chinese finger trap, PLOS Comput. Biol, vol.11, p.1004302, 2015.

S. E. , Lux 4th, Anatomy of the red cell membrane skeleton: Unanswered questions, Blood, vol.127, pp.187-199, 2016.

J. Levine and M. Willard, Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells, J. Cell Biol, vol.90, pp.631-642, 1981.

J. R. Glenney and P. Glenney, Fodrin is the general spectrin-like protein found in most cells whereas spectrin and the TW protein have a restricted distribution, Cell, vol.34, pp.503-512, 1983.

J. C. Winkelmann and B. G. Forget, Erythroid and nonerythroid spectrins, Blood, vol.81, pp.3173-3185, 1993.

K. Burridge, T. Kelly, and P. Mangeat, Nonerythrocyte spectrins: Actin-membrane attachment proteins occurring in many cell types, J. Cell Biol, vol.95, pp.478-486, 1982.

B. M. Riederer, I. S. Zagon, and S. R. Goodman, Brain spectrin(240/235) and brain spectrin(240/235E): Two distinct spectrin subtypes with different locations within mammalian neural cells, J. Cell Biol, vol.102, pp.2088-2097, 1986.

K. Xu, G. Zhong, and X. Zhuang, Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons, Science, vol.339, pp.452-456, 2013.

V. Bennett, J. Davis, and W. E. Fowler, Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin, Nature, vol.299, pp.126-131, 1982.

J. R. Glenney, P. Glenney, and K. Weber, F-actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule, J. Biol. Chem, vol.257, pp.9781-9787, 1982.

M. Papandréou and C. Leterrier, The functional architecture of axonal actin, Mol. Cell. Neurosci, vol.91, pp.151-159, 2018.

J. He, Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.6029-6034, 2016.

. D'este, Subcortical cytoskeleton periodicity throughout the nervous system, Sci. Rep, vol.6, p.22741, 2016.

M. Hammarlund, E. M. Jorgensen, and M. J. Bastiani, Axons break in animals lacking ?-spectrin, J. Cell Biol, vol.176, pp.269-275, 2007.

M. Krieg, A. R. Dunn, and M. B. Goodman, Mechanical control of the sense of touch by ?-spectrin, Nat. Cell Biol, vol.16, pp.224-233, 2014.

E. A. Holleran, M. K. Tokito, S. Karki, and E. L. Holzbaur, Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles, J. Cell Biol, vol.135, pp.1815-1829, 1996.

S. Takeda, Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building, J. Cell Biol, vol.148, pp.1255-1265, 2000.

M. R. Galiano, A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly, Cell, vol.149, pp.1125-1139, 2012.

M. Hyvönen, Structure of the binding site for inositol phosphates in a PH domain, EMBO J, vol.14, pp.4676-4685, 1995.

V. Muresan, Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: A role for spectrin and acidic phospholipids, Mol. Cell, vol.7, pp.173-183, 2001.

D. N. Lorenzo, Spectrin mutations that cause spinocerebellar ataxia type 5 impair axonal transport and induce neurodegeneration in Drosophila, J. Cell Biol, vol.189, pp.143-158, 2010.

Y. Tang, Disruption of transforming growth factor-? signaling in ELF ?-spectrin-deficient mice, Science, vol.299, pp.574-577, 2003.

C. Y. Huang, C. Zhang, D. R. Zollinger, C. Leterrier, and M. N. Rasband, An ?II spectrin-based cytoskeleton protects large-diameter myelinated axons from degeneration, J. Neurosci, vol.37, pp.11323-11334, 2017.

G. Zhong, Developmental mechanism of the periodic membrane skeleton in axons, vol.3, p.194, 2014.

B. Han, R. Zhou, C. Xia, and X. Zhuang, Structural organization of the actin-spectrin?based membrane skeleton in dendrites and soma of neurons, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.6678-6685, 2017.

D. N. Lorenzo, A PIK3C3-ankyrin-B-dynactin pathway promotes axonal growth and multiorganelle transport, J. Cell Biol, vol.207, pp.735-752, 2014.