A. Abou-hamdan, B. Burlat, O. Gutierrez-sanz, P. P. Liebgott, C. Baffert et al.,

S. Dementin, O 2 -independent formation of the inactive states of NiFe hydrogenase, Nature chemical biology, vol.9, pp.15-17, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01556905

A. Abou-hamdan, S. Dementin, P. P. Liebgott, O. Gutierrez-sanz, P. Richaud et al.,

C. Léger, Understanding and tuning the catalytic bias of hydrogenase, Journal of the American Chemical Society, vol.134, pp.8368-8371, 2012.

A. Abou-hamdan, P. P. Liebgott, V. Fourmond, O. Gutierrez-sanz, A. L. De-lacey et al.,

C. Léger, Relation between anaerobic inactivation and oxygen tolerance in a large series of NiFe hydrogenase mutants, Proceedings of the National Academy of Sciences of the United States of America, vol.109, 2012.

M. W. Adams, The structure and mechanism of iron-hydrogenases, Biochimica et biophysica acta, vol.1020, pp.115-145, 1990.

L. Avilan, B. Roumezi, V. Risoul, C. S. Bernard, A. Kpebe et al.,

A. Latifi, Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed in the heterocysts of the cyanobacterium Nostoc PCC 7120, Applied microbiology and biotechnology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01810317

C. Baffert, L. Bertini, T. Lautier, C. Greco, K. Sybirna et al., CO disrupts the reduced H-cluster of FeFe hydrogenase. A combined DFT and protein film voltammetry study, Journal of the American Chemical Society, vol.133, pp.2096-2099, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00677449

C. Baffert, S. Dementin, V. Fourmond, and C. Léger, L'électrochimie, un outil pour étudier les mécanismes enzymatiques. L'actualité chimique, vol.392, pp.9-15, 2015.

C. S. Baltazar, M. C. Marques, C. M. Soares, A. L. De-lacey, I. A. Pereira et al., Nickel-Iron-Selenium Hydrogenases -An Overview, Int J Inorg Chem, pp.948-962, 2011.

R. D. Barabote, M. H. Saier, and . Jr, Comparative genomic analyses of the bacterial phosphotransferase system, Microbiology and molecular biology reviews : MMBR, vol.69, pp.608-634, 2005.

F. Baymann, B. Schoepp-cothenet, S. Duval, M. Guiral, M. Brugna et al.,

W. Nitschke, On the Natural History of Flavin-Based Electron Bifurcation, Frontiers in Microbiology, vol.9, p.1357, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01828959

G. R. Bell, J. P. Lee, H. D. Peck, . Jr, and J. L. Gall, Reactivity of Desulfovibrio gigas hydrogenase toward artificial and natural electron donors or acceptors, Biochimie, vol.60, pp.315-320, 1978.

S. Benomar, D. Ranava, M. L. Cardenas, E. Trably, Y. Rafrafi et al., Nutritional stress induces exchange of cell material and energetic coupling between bacterial species, Nature communications, vol.6, p.6283, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01427429

Y. Berlier, G. D. Fauque, J. Legall, E. S. Choi, H. D. Peck et al., Inhibition studies of three classes of Desulfovibrio hydrogenase: application to the further characterization of the multiple hydrogenases found in Desulfovibrio vulgaris Hildenborough, Biochemical and biophysical research communications, vol.146, pp.147-153, 1987.

J. A. Birrell, K. Wrede, K. Pawlak, P. Rodriguez-marcia, O. Rüdiger et al., Artificial maturation of the highly active heterodimeric [FeFe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757, Israel Journal of Chemistry, vol.56, p.852, 2016.

K. A. Brileya, L. B. Camilleri, G. M. Zane, J. D. Wall, and M. W. Fields, Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy, Front Microbiol, vol.5, p.693, 2014.

J. B. Broderick, A. S. Byer, K. S. Duschene, B. R. Duffus, J. N. Betz et al., H-cluster assembly during maturation of the [FeFe]-hydrogenase, Journal of biological inorganic chemistry, vol.19, pp.747-757, 2014.

M. P. Bryant, L. L. Campbell, C. A. Reddy, and M. R. Crabill, Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H 2 -utilizing methanogenic bacteria, Applied and environmental microbiology, vol.33, pp.1162-1169, 1977.

W. Buckel and R. K. Thauer, Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation, Biochimica et biophysica acta, vol.1827, pp.94-113, 2013.

W. Buckel and R. K. Thauer, Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling. Chemical reviews, 2018.

W. Buckel and R. K. Thauer, Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD(+) (Rnf) as Electron Acceptors: A Historical Review, Front Microbiol, vol.9, p.401, 2018.

W. A. Bulen, R. C. Burns, and J. R. Lecomte, Nitrogen Fixation: Hydrosulfite as Electron Donor with Cell-Free Preparations of Azotobacter Vinelandii and Rhodospirillum Rubrum, Proceedings of the, vol.53, pp.532-539, 1965.

S. M. Caffrey, H. S. Park, J. K. Voordouw, Z. He, J. Zhou et al., Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, Journal of bacteriology, vol.189, pp.6159-6167, 2007.

M. Calusinska, T. Happe, B. Joris, and A. Wilmotte, The surprising diversity of clostridial hydrogenases: a comparative genomic perspective, Microbiology, vol.156, pp.1575-1588, 2010.

L. Casalot, G. De-luca, Z. Dermoun, M. Rousset, and P. Philip, Evidence for a fourth hydrogenase in Desulfovibrio fructosovorans, Journal of bacteriology, vol.184, pp.853-856, 2002.

L. Casalot, C. E. Hatchikian, N. Forget, P. De-philip, Z. Dermoun et al., Molecular study and partial characterization of iron-only hydrogenase in Desulfovibrio fructosovorans, Anaerobe, vol.4, pp.45-55, 1998.

L. Casalot, O. Valette, G. De-luca, Z. Dermoun, M. Rousset et al., Construction and physiological studies of hydrogenase depleted mutants of Desulfovibrio fructosovorans, FEMS microbiology letters, vol.214, pp.107-112, 2002.

E. Chabrière, M. H. Charon, A. Volbeda, L. Pieulle, E. C. Hatchikian et al., Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate, Nature structural biology, vol.6, pp.182-190, 1999.

N. Chongdar, J. A. Birrell, K. Pawlak, C. Sommer, E. J. Reijerse et al.,

H. Ogata, Unique Spectroscopic Properties of the H-Cluster in a Putative Sensory, 2018.

. Hydrogenase, Journal of the American Chemical Society, vol.140, pp.1057-1068

G. A. Christensen, G. M. Zane, A. E. Kazakov, X. Li, D. A. Rodionov et al., Rex (encoded by DVU_0916) in Desulfovibrio vulgaris Hildenborough is a repressor of sulfate adenylyl transferase and is regulated by NADH, Journal of bacteriology, vol.197, pp.29-39, 2015.

M. E. Clark, Z. He, A. M. Redding, M. P. Joachimiak, J. D. Keasling et al., Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state, BMC genomics, p.138, 2012.

J. Cohen, K. Kim, P. King, M. Seibert, and K. Schulten, Finding gas diffusion pathways in proteins: application to O 2 and H 2 transport in CpI [FeFe]-hydrogenase and the role of packing defects, Structure, vol.13, pp.1321-1329, 2005.

M. L. Coleman, D. B. Hedrick, D. R. Lovley, D. C. White, and K. Pye, Reduction of Fe(III) in sediments by sulphate-reducing bacteria, Nature, vol.361, pp.436-438, 1993.

R. Conrad, T. J. Phelps, and J. G. Zeikus, Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage Sludge and lake sediments, Applied and environmental microbiology, vol.50, pp.595-601, 1985.

A. J. Cornish, K. Gartner, H. Yang, J. W. Peters, and E. L. Hegg, Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum, The Journal of biological chemistry, vol.286, pp.38341-38347, 2011.

H. Cypionka, Oxygen respiration by Desulfovibrio species. Annual review of microbiology, vol.54, pp.827-848, 2000.

S. M. Da-silva, C. Amaral, S. S. Neves, C. Santos, C. Pimentel et al., An HcpR paralog of Desulfovibrio gigas provides protection against nitrosative stress, FEBS open bio, vol.5, pp.594-604, 2015.

G. De-luca, M. Asso, J. P. Belaich, and Z. Dermoun, Purification and characterization of the HndA subunit of NADP-reducing hydrogenase from Desulfovibrio fructosovorans overproduced in Escherichia coli, Biochemistry, vol.37, pp.2660-2665, 1998.

G. De-luca, P. De-philip, M. Rousset, J. P. Belaich, and Z. Dermoun, The NADP-reducing hydrogenase of Desulfovibrio fructosovorans: evidence for a native complex with hydrogen-dependent methyl-viologen-reducing activity, Biochemical and biophysical research communications, vol.248, pp.591-596, 1998.

S. Dementin, V. Belle, P. Bertrand, B. Guigliarelli, G. Adryanczyk-perrier et al.,

C. Léger, Changing the ligation of the distal [4Fe4S] cluster in NiFe hydrogenase impairs inter-and intramolecular electron transfers, Journal of the American Chemical Society, vol.128, pp.5209-5218, 2006.

S. Dementin, B. Burlat, A. L. De-lacey, A. Pardo, G. Adryanczyk-perrier et al.,

M. Rousset, A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase, The Journal of biological chemistry, vol.279, pp.10508-10513, 2004.

S. Dementin, B. Burlat, V. Fourmond, F. Leroux, P. P. Liebgott et al., Rates of intra-and intermolecular electron transfers in hydrogenase deduced from steady-state activity measurements, Journal of the American Chemical Society, vol.133, pp.10211-10221, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00677402

S. Dementin, F. Leroux, L. Cournac, A. L. De-lacey, A. Volbeda et al.,

M. Rousset, Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant, Journal of the American Chemical Society, vol.131, pp.10156-10164, 2009.

Z. Dermoun, G. De-luca, M. Asso, P. Bertrand, F. Guerlesquin et al., The NADP-reducing hydrogenase from Desulfovibrio fructosovorans: functional interaction between the C-terminal region of HndA and the N-terminal region of HndD subunits, Biochimica et biophysica acta, vol.1556, pp.217-225, 2002.

D. Dogaru, S. Motiu, and V. Gogonea, Inactivation of [Fe-Fe]-Hydrogenase by O 2 . Thermodynamics and Frontier Molecular Orbitals Analyses, International journal of quantum chemistry, vol.109, pp.876-889, 2009.

A. Dolla, M. Fournier, and Z. Dermoun, Oxygen defense in sulfate-reducing bacteria, Journal of biotechnology, vol.126, pp.87-100, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00475671

A. Dolla, D. M. Kurtz, M. Teixeira, and G. Voordouw, Biochemical, proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio, Sulphate-reducing Bacteria Environmental and Engineered Systems, pp.185-213, 2007.

R. G. Efremov and L. A. Sazanov, The coupling mechanism of respiratory complex I -a structural and evolutionary perspective, Biochimica et biophysica acta, vol.1817, pp.1785-1795, 2012.

A. Eminoglu, S. J. Murphy, M. Maloney, A. Lanahan, R. J. Giannone et al.,

D. G. Olson, Deletion of the hfsB gene increases ethanol production in Thermoanaerobacterium saccharolyticum and several other thermophilic anaerobic bacteria, Biotechnology for biofuels, vol.10, p.282, 2017.

F. Enzmann, F. Mayer, M. Rother, and D. Holtmann, Methanogens: biochemical background and biotechnological applications, vol.8, p.1, 2018.

H. J. Fan and M. B. Hall, A capable bridging ligand for Fe-only hydrogenase: density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen, Journal of the American Chemical Society, vol.123, pp.3828-3829, 2001.

G. Fauque, H. D. Peck, . Jr, J. J. Moura, B. H. Huynh et al., The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio, FEMS microbiology reviews, vol.4, pp.299-344, 1988.

R. M. Fitz and H. Cypionka, A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans, Archives of Microbiology, vol.152, pp.369-376, 1989.

R. M. Fitz and H. Cypionka, Generation of a proton gradient in Desulfovibrio vulgaris, Archives of Microbiology, vol.155, pp.444-448, 1991.

J. C. Fontecilla-camps, A. Cavazza, C. Nicolet, and Y. , Structure/Function Relationships of [NiFe]-and [FeFe]-Hydrogenases, Chemical reviews, vol.107, pp.4273-4303, 2007.

L. Forzi, J. Koch, A. M. Guss, C. G. Radosevich, W. W. Metcalf et al., Assignment of the [4Fe-4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants, The FEBS journal, vol.272, pp.4741-4753, 2005.

V. Fourmond, C. Baffert, K. Sybirna, S. Dementin, A. Abou-hamdan et al., The mechanism of inhibition by H 2 of H 2 -evolution by hydrogenases, Chem Commun (Camb), vol.49, pp.6840-6842, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268212

M. Fournier, Z. Dermoun, M. C. Durand, and A. Dolla, A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress, The Journal of biological chemistry, vol.279, pp.1787-1793, 2004.

M. Frey, Hydrogenases: hydrogen-activating enzymes, European journal of chemical biology, vol.3, pp.153-160, 2002.

B. Friedrich, T. Buhrke, T. Burgdorf, and O. Lenz, A hydrogen-sensing multiprotein complex controls aerobic hydrogen metabolism in Ralstonia eutropha, Biochemical Society transactions, vol.33, pp.97-101, 2005.

K. Gärtner, S. Lechno-yossef, A. J. Cornish, C. P. Wolk, and E. L. Hegg, Expression of Shewanella oneidensis MR-1 [FeFe]-hydrogenase genes in Anabaena sp. strain PCC 7120, Applied and environmental microbiology, vol.78, pp.8579-8586, 2012.

R. H. Geerse, F. Izzo, and P. W. Postma, The PEP: fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities, Molecular & general genetics : MGG, vol.216, pp.517-525, 1989.

R. H. Geerse, C. R. Ruig, A. R. Schuitema, and P. W. Postma, Relationship between pseudoHPr and the PEP: fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli, vol.203, pp.435-444, 1986.

M. L. Ghirardi, Implementation of photobiological H 2 production: the O 2 sensitivity of hydrogenases, Photosynthesis research, vol.125, pp.383-393, 2015.

A. Goenka, J. K. Voordouw, W. Lubitz, W. Gartner, and G. Voordouw, Construction of a [NiFe]-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough, Biochemical Society transactions, vol.33, pp.59-60, 2005.

G. Goldet, C. Brandmayr, S. T. Stripp, T. Happe, C. Cavazza et al., Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects, Journal of the American Chemical Society, vol.131, pp.14979-14989, 2009.

D. A. Grahame and E. Demoll, Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri, Biochemistry, vol.34, pp.4617-4624, 1995.

C. Greco, M. Bruschi, L. De-gioia, and U. Ryde, A QM/MM investigation of the activation and catalytic mechanism of Fe-only hydrogenases, Inorganic chemistry, vol.46, pp.5911-5921, 2007.

C. Greening, A. Biswas, C. R. Carere, C. J. Jackson, M. C. Taylor et al.,

S. E. Morales, Genomic and metagenomic surveys of hydrogenase distribution indicate H 2 is a widely utilised energy source for microbial growth and survival, The ISME journal, vol.10, pp.761-777, 2016.

C. Greening and G. M. Cook, Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology, Current opinion in microbiology, vol.18, pp.30-38, 2014.

T. A. Hansen, Carbon Metabolism of Sulfate-Reducing Bacteria, The Sulfate-Reducing Bacteria: Contemporary Perspectives, pp.21-40, 1993.

T. Happe, B. Mosler, and J. D. Naber, Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii, European journal of biochemistry, vol.222, pp.769-774, 1994.

T. Happe and J. D. Naber, Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii, European journal of biochemistry, vol.214, pp.475-481, 1993.

C. Hatchikian, N. Forget, V. M. Fernandez, R. Williams, and R. Cammack, Further characterization of the [Fe]-hydrogenase from Desulfovibrio desulfuricans ATCC 7757, European journal of biochemistry, vol.209, pp.357-365, 1992.

C. E. Hatchikian, A. S. Traore, V. M. Fernandez, and R. Cammack, Characterization of the nickel-iron periplasmic hydrogenase from Desulfovibrio fructosovorans, European journal of biochemistry, vol.187, pp.635-643, 1990.

E. C. Hatchikian, M. Bruschi, and J. Gall, Characterization of the periplasmic hydrogenase from Desulfovibrio gigas, Biochemical and biophysical research communications, vol.82, pp.451-461, 1978.

R. Hedderich, Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I, Journal of bioenergetics and biomembranes, vol.36, pp.65-75, 2004.

R. Hedderich and L. Forzi, Energy-converting [NiFe] hydrogenases: more than just H 2 activation, Journal of molecular microbiology and biotechnology, vol.10, pp.92-104, 2005.

J. F. Heidelberg, R. Seshadri, S. A. Haveman, C. L. Hemme, I. T. Paulsen et al., The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, Nature biotechnology, vol.22, pp.554-559, 2004.

J. T. Henry and S. Crosson, Ligand-binding PAS domains in a genomic, cellular, and structural context. Annual review of microbiology, vol.65, pp.261-286, 2011.

Y. Higuchi, T. Yagi, and N. Yasuoka, Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis, Structure, vol.5, pp.1671-1680, 1997.

H. Huang, S. Wang, J. Moll, and R. K. Thauer, Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H 2 plus CO 2, Journal of bacteriology, vol.194, pp.3689-3699, 2012.

K. L. Keller and J. D. Wall, Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio, Front Microbiol, vol.2, p.135, 2011.

H. L. Kornberg, Routes for fructose utilization by Escherichia coli, Journal of molecular microbiology and biotechnology, vol.3, pp.355-359, 2001.

A. T. Kovacs, G. Rakhely, J. Balogh, G. Maroti, A. Fulop et al., Anaerobic regulation of hydrogenase transcription in different bacteria, Biochemical Society transactions, vol.33, pp.36-38, 2005.

A. Kpebe, M. Benvenuti, C. Guendon, A. Rebai, V. Fernandez et al.,

M. Brugna, A new mechanistic model for an O 2 -protected electron-bifurcating hydrogenase, Hnd from Desulfovibrio fructosovorans, Biochimica et biophysica acta. Bioenergetics, vol.1859, pp.1302-1312, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01928576

L. R. Krumholz, P. Bradstock, C. S. Sheik, Y. Diao, O. Gazioglu et al., Syntrophic growth of Desulfovibrio alaskensis requires genes for H 2 and formate metabolism as well as those for flagellum and biofilm formation, Applied and environmental microbiology, vol.81, pp.2339-2348, 2015.

G. Kulkarni, T. D. Mand, and W. W. Metcalf, Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri, p.9, 2018.

A. Künkel, J. A. Vorholt, R. K. Thauer, and R. Hedderich, An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea, European journal of biochemistry, vol.252, pp.467-476, 1998.

S. Kurkin, J. Meuer, J. Koch, R. Hedderich, and S. P. Albracht, The membrane-bound [NiFe]-hydrogenase (Ech) from Methanosarcina barkeri: unusual properties of the iron-sulphur clusters, European journal of biochemistry, vol.269, pp.6101-6111, 2002.

M. J. Lacasse and D. B. Zamble, Hydrogenase Maturation, vol.55, pp.1689-1701, 2016.

F. Leroux, S. Dementin, B. Burlat, L. Cournac, A. Volbeda et al.,

C. Leger, Experimental approaches to kinetics of gas diffusion in hydrogenase, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.11188-11193, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00336010

P. P. Liebgott, A. L. De-lacey, B. Burlat, L. Cournac, P. Richaud et al.,

S. Dementin, Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valineto-cysteine mutation near the active site, Journal of the American Chemical Society, vol.133, pp.986-997, 2011.

P. P. Liebgott, F. Leroux, B. Burlat, S. Dementin, C. Baffert et al.,

C. Leger, Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase, Nature chemical biology, vol.6, pp.63-70, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677689

S. A. Lobo, M. J. Warren, and L. M. Saraiva, Sulfate-reducing bacteria reveal a new branch of tetrapyrrole metabolism, Advances in microbial physiology, vol.61, pp.267-295, 2012.

N. A. Losey, F. Mus, J. W. Peters, H. M. Le, and M. J. Mcinerney, Syntrophomonas wolfei Uses an NADH-Dependent, Ferredoxin-Independent [FeFe]-Hydrogenase To Reoxidize NADH, Applied and environmental microbiology, p.83, 2017.

D. R. Lovley and E. J. Phillips, Reduction of uranium by Desulfovibrio desulfuricans, Applied and environmental microbiology, vol.58, pp.850-856, 1992.

D. R. Lovley and E. J. Phillips, Reduction of Chromate by Desulfovibrio vulgaris and Its c 3 Cytochrome, Applied and environmental microbiology, vol.60, pp.726-728, 1994.

F. S. Lupton, R. Conrad, and J. G. Zeikus, Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates, Journal of bacteriology, vol.159, pp.843-849, 1984.

S. Malki, G. De-luca, M. L. Fardeau, M. Rousset, J. P. Belaich et al., Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans, Archives of Microbiology, vol.167, pp.38-45, 1997.

S. Malki, I. Saimmaime, G. De-luca, M. Rousset, Z. Dermoun et al., Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans, Journal of bacteriology, vol.177, pp.2628-2636, 1995.

C. Marschall, P. Frenzel, and H. Cypionka, Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria, Archives of Microbiology, vol.159, pp.168-173, 1993.

M. Merrouch, J. Hadj-said, L. Domnik, H. Dobbek, C. Léger et al., O 2 Inhibition of Ni-Containing CO Dehydrogenase Is Partly Reversible, Chemistry, vol.21, pp.18934-18938, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432205

J. Meuer, S. Bartoschek, J. Koch, A. Kunkel, and R. Hedderich, Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri, European journal of biochemistry, vol.265, pp.325-335, 1999.

J. Meuer, H. C. Kuettner, J. K. Zhang, R. Hedderich, and W. W. Metcalf, Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation, vol.99, pp.5632-5637, 2002.

B. Meyer, J. V. Kuehl, M. N. Price, J. Ray, A. M. Deutschbauer et al., The energy-conserving electron transfer system used by Desulfovibrio alaskensis strain G20 during pyruvate fermentation involves reduction of endogenously formed fumarate and cytoplasmic and membrane-bound complexes, Hdr-Flox and Rnf. Environmental microbiology, vol.16, pp.3463-3486, 2014.

C. Michel, M. Brugna, C. Aubert, A. Bernadac, and M. Bruschi, Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases, Applied microbiology and biotechnology, vol.55, pp.95-100, 2001.

J. D. Miller and D. S. Wakerley, Growth of sulphate-reducing bacteria by fumarate dismutation, J Gen Microbiol, vol.43, pp.101-107, 1966.

Y. Montet, P. Amara, A. Volbeda, X. Vernede, E. C. Hatchikian et al., Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics, Nature structural biology, vol.4, pp.523-526, 1997.

F. O. Morais-silva, A. M. Rezende, C. Pimentel, C. I. Santos, C. Clemente et al.,

C. Rodrigues-pousada, Genome sequence of the model sulfate reducer Desulfovibrio gigas: a comparative analysis within the Desulfovibrio genus, vol.3, pp.513-530, 2014.

F. O. Morais-silva, C. I. Santos, R. Rodrigues, I. A. Pereira, and C. Rodrigues-pousada, Roles of HynAB and Ech, the only two hydrogenases found in the model sulfate reducer Desulfovibrio gigas, Journal of bacteriology, vol.195, pp.4753-4760, 2013.

J. J. Moura, I. Moura, B. H. Huynh, H. J. Kruger, M. Teixeira et al.,

J. Legall, Unambiguous identification of the nickel EPR signal in 61 Ni-enriched Desulfovibrio gigas hydrogenase, Biochemical and biophysical research communications, vol.108, pp.1388-1393, 1982.

Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian, and J. C. Fontecilla-camps, Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center, Structure, vol.7, pp.13-23, 1999.

J. T. Nielsen, W. Liesack, and K. Finster, Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina, International journal of systematic bacteriology, vol.49, pp.859-865, 1999.

D. R. Noguera, G. A. Brusseau, B. E. Rittmann, and D. A. Stahl, A unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions, Biotechnology and bioengineering, vol.59, pp.732-746, 1998.

M. Nouailler, X. Morelli, O. Bornet, B. Chetrit, Z. Dermoun et al., Solution structure of HndAc: a thioredoxin-like domain involved in the NADP-reducing hydrogenase complex, vol.15, pp.1369-1378, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00475666

J. M. Odom, H. D. Peck, and . Jr, Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp, FEMS Microbiol Letters, vol.12, pp.47-50, 1981.

B. Ollivier, R. Cord-ruwisch, E. C. Hatchikian, and J. L. Garcia, Characterization of Desulfovibrio fructosovorans sp, Archives of Microbiology, vol.149, pp.447-450, 1988.

C. Orain, L. Saujet, C. Gauquelin, P. Soucaille, I. Meynial-salles et al.,

C. Leger, Electrochemical Measurements of the Kinetics of Inhibition of Two FeFe Hydrogenases by O 2 Demonstrate That the Reaction Is Partly Reversible, Journal of the American Chemical Society, vol.137, pp.12580-12587, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01211469

G. Pan, A. L. Menon, and M. W. Adams, Characterization of a [2Fe-2S] protein encoded in the iron-hydrogenase operon of Thermotoga maritima, Journal of biological inorganic chemistry, vol.8, pp.469-474, 2003.

I. P. Pankhania, L. A. Gow, and W. A. Hamilton, The Effect of Hydrogen on the Growth of Desulfovibrio vulgaris Hildenborough on Lactate, J. Gen. Microbiol, vol.132, pp.3349-3356, 1986.

Y. W. Park, Y. Y. Jang, H. K. Joo, and J. Y. Lee, Structural Analysis of Redox-sensing Transcriptional Repressor Rex from Thermotoga maritima, Scientific reports, vol.8, p.13244, 2018.

D. S. Patil, J. J. Moura, S. H. He, M. Teixeira, B. C. Prickril et al.,

B. H. Huynh, EPR-detectable redox centers of the periplasmic hydrogenase from Desulfovibrio vulgaris, The Journal of biological chemistry, vol.263, pp.18732-18738, 1988.

I. A. Pereira, A. R. Ramos, F. Grein, M. C. Marques, S. M. Da-silva et al., A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea, Front Microbiol, vol.2, p.69, 2011.

P. M. Pereira, Q. He, F. M. Valente, A. V. Xavier, J. Zhou et al., Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis, Antonie van Leeuwenhoek, vol.93, pp.347-362, 2008.

P. M. Pereira, Q. He, A. V. Xavier, J. Zhou, I. A. Pereira et al., Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions, Archives of Microbiology, vol.189, pp.451-461, 2008.

J. W. Peters, D. N. Beratan, B. Bothner, R. B. Dyer, C. S. Harwood et al.,

M. W. Adams, A new era for electron bifurcation, Current opinion in chemical biology, vol.47, pp.32-38, 2018.

J. W. Peters, D. N. Beratan, G. J. Schut, and M. W. Adams, On the nature of organic and inorganic centers that bifurcate electrons, coupling exergonic and endergonic oxidationreduction reactions, Chem Commun (Camb), vol.54, pp.4091-4099, 2018.

J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt, X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution, Science, vol.282, pp.1853-1858, 1998.

J. W. Peters, G. J. Schut, E. S. Boyd, D. W. Mulder, E. M. Shepard et al.,

M. W. Adams, [FeFe]-and [NiFe]-hydrogenase diversity, mechanism, and maturation, Biochimica et biophysica acta, vol.1853, pp.1350-1369, 2015.

A. J. Pierik, W. R. Hagen, J. S. Redeker, R. B. Wolbert, M. Boersma et al., Redox properties of the iron-sulfur clusters in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough), European journal of biochemistry, vol.209, pp.63-72, 1992.

B. K. Pohorelic, J. K. Voordouw, E. Lojou, A. Dolla, J. Harder et al., Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism, Journal of bacteriology, vol.184, pp.679-686, 2002.

S. Poudel, E. C. Dunham, M. R. Lindsay, M. J. Amenabar, E. M. Fones et al., Origin and Evolution of Flavin-Based Electron Bifurcating Enzymes. Front Microbiol, vol.9, p.1762, 2018.

S. Poudel, M. Tokmina-lukaszewska, D. R. Colman, M. Refai, G. J. Schut et al.,

E. S. Boyd, Unification of [FeFe]-hydrogenases into three structural and functional groups, Biochimica et biophysica acta, vol.1860, pp.1910-1921, 2016.

R. Rabus, T. A. Hansen, and F. Widdel, Dssimilatory sulfate-and sulfur-reducing prokaryotes, The Prokaryotes, pp.309-404, 2013.

L. Rajeev, K. L. Hillesland, G. M. Zane, A. Zhou, M. P. Joachimiak et al.,

D. A. Stahl, Deletion of the Desulfovibrio vulgaris carbon monoxide sensor invokes global changes in transcription, Journal of bacteriology, vol.194, pp.5783-5793, 2012.

F. Ramel, G. Brasseur, L. Pieulle, O. Valette, A. Hirschler-rea et al., Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases, PloS one, vol.10, p.123455, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01216176

D. A. Ravcheev, X. Li, H. Latif, K. Zengler, S. A. Leyn et al., Transcriptional regulation of central carbon and energy metabolism in bacteria by redoxresponsive repressor Rex, Journal of bacteriology, vol.194, pp.1145-1157, 2012.

F. T. Robb and S. M. Techtmann, Life on the fringe: microbial adaptation to growth on carbon monoxide, 1000.

D. A. Rodionov, I. Dubchak, A. Arkin, E. Alm, and M. S. Gelfand, Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria, Genome biology, vol.5, p.90, 2004.

R. Rodrigues, F. M. Valente, I. A. Pereira, S. Oliveira, and C. Rodrigues-pousada, A novel membrane-bound Ech [NiFe] hydrogenase in Desulfovibrio gigas, Biochemical and biophysical research communications, vol.306, pp.366-375, 2003.

P. Rodriguez-macia, E. J. Reijerse, M. Van-gastel, S. Debeer, W. Lubitz et al., Sulfide Protects [FeFe] Hydrogenases From O 2, Journal of the American Chemical Society, vol.140, pp.9346-9350, 2018.

M. Rousset, Z. Dermoun, M. Chippaux, and J. P. Belaich, Marker exchange mutagenesis of the hydN genes in Desulfovibrio fructosovorans, Molecular microbiology, vol.5, pp.1735-1740, 1991.

M. Rousset, Z. Dermoun, J. D. Wall, and J. P. Belaich, Analysis of the periplasmic [NiFe] hydrogenase transcription unit from Desulfovibrio fructosovorans, Journal of bacteriology, vol.175, pp.3388-3393, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00331165

M. Rousset, Y. Montet, B. Guigliarelli, N. Forget, M. Asso et al.,

E. C. Hatchikian, , vol.95, pp.11625-11630, 1998.

H. Sass and H. Cypionka, Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. Systematic and applied microbiology, vol.27, pp.541-548, 2004.

B. Schink and A. J. Stams, Syntrophism among prokaryotes, The Prokaryotes, pp.309-335, 2002.

M. Schoeffler, A. L. Gaudin, F. Ramel, O. Valette, Y. Denis et al.,

A. Dolla, Growth of an anaerobic sulfate-reducing bacterium sustained by oxygen respiratory energy conservation after O2 -driven experimental evolution, Environmental microbiology, vol.21, pp.360-373, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01976026

K. Schuchmann, N. P. Chowdhury, and V. Muller, Complex Multimeric [FeFe] Hydrogenases: Biochemistry, Physiology and New Opportunities for the Hydrogen Economy. Front Microbiol, vol.9, p.2911, 2018.

K. Schuchmann and V. Müller, A bacterial electron-bifurcating hydrogenase, The Journal of biological chemistry, vol.287, pp.31165-31171, 2012.

G. J. Schut and M. W. Adams, The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production, Journal of bacteriology, vol.191, pp.4451-4457, 2009.

E. Schwartz, J. Fritsch, and B. Friedrich, H 2 -metabolizing prokaryotes, The Prokaryotes: Prokaryotic Physiology and Biochemistry, pp.119-199, 2013.

A. J. Shaw, D. A. Hogsett, and L. R. Lynd, Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout, Journal of bacteriology, vol.191, pp.6457-6464, 2009.

E. M. Shepard, F. Mus, J. N. Betz, A. S. Byer, B. R. Duffus et al., Biochemistry, vol.53, pp.4090-4104, 2014.

A. Silakov, B. Wenk, E. Reijerse, and W. Lubitz, , 2009.

, N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge, Physical chemistry chemical physics : PCCP, vol.11, pp.6592-6599

M. S. Sim, D. T. Wang, G. M. Zane, J. D. Wall, T. Bosak et al., Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c 3, 2013.

R. Singleton, The Sulfate-Reducing Bacteria: An Overview, The Sulfate-Reducing Bacteria: Contemporary Perspectives, pp.1-20, 1993.

B. Soboh, D. Linder, and R. Hedderich, A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis, Microbiology, vol.150, pp.2451-2463, 2004.

M. T. Stiebritz and R. Reiher, Hydrogenases and oxygen, Chemical science, vol.3, pp.1739-1751, 2012.

S. Stolyar, S. Van-dien, K. L. Hillesland, N. Pinel, T. J. Lie et al., Metabolic modeling of a mutualistic microbial community, Molecular systems biology, vol.3, p.92, 2007.

K. Sybirna, T. Antoine, P. Lindberg, V. Fourmond, M. Rousset et al., Shewanella oneidensis: a new and efficient system for expression and maturation of heterologous [Fe-Fe] hydrogenase from Chlamydomonas reinhardtii, BMC biotechnology, vol.8, p.73, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00331156

M. Teixeira, I. Moura, A. V. Xavier, B. H. Huynh, D. V. Dervartanian et al.,

J. J. Moura, Electron paramagnetic resonance studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas, The Journal of biological chemistry, vol.260, pp.8942-8950, 1985.

R. K. Thauer, E. Stackebrandt, and W. A. Hamilton, Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria, Sulphatereducing Bacteria Environmental and Engineered Systems, pp.1-37, 2007.

E. Theodoratou, R. Huber, and A. Bock, Hydrogenase maturation endopeptidase: structure and function, vol.33, pp.108-111, 2005.

J. B. Therien, J. H. Artz, S. Poudel, T. L. Hamilton, Z. Liu et al.,

J. W. Peters, The Physiological Functions and Structural Determinants of Catalytic Bias in the, 2017.

, Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5. Front Microbiol, vol.8, p.1305

M. Trinkerl, A. Breunig, R. Schauder, and H. König, Desulfovibrio termitidis sp.nov.,a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite, Systematic and applied microbiology, vol.13, pp.372-377, 1990.

K. Tsuji and T. Yagi, Significance of hydrogen burst from growing cultures of Desulfovibrio vulgaris, Miyazaki, and the role of hydrogenase and cytochrome c 3 in energy production system, Archives of Microbiology, vol.125, pp.35-42, 1980.

F. M. Valente, C. C. Almeida, I. Pacheco, J. Carita, L. M. Saraiva et al., Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism, Journal of bacteriology, vol.188, pp.3688-3694, 1991.

T. M. Van-der-spek, A. F. Arendsen, R. P. Happe, S. Yun, K. A. Bagley et al.,

S. P. Albracht, Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy, European journal of biochemistry, vol.237, pp.629-634, 1996.

M. F. Verhagen, T. O'rourke, and M. W. Adams, The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization, Biochimica et biophysica acta, vol.1412, pp.212-229, 1999.

P. M. Vignais and B. Billoud, Occurrence, classification, and biological function of hydrogenases: an overview, Chemical reviews, vol.107, pp.4206-4272, 2007.

P. M. Vignais, B. Billoud, and J. Meyer, Classification and phylogeny of hydrogenases, FEMS microbiology reviews, vol.25, pp.455-501, 2001.

N. Vita, E. C. Hatchikian, M. Nouailler, A. Dolla, and L. Pieulle, Disulfide bond-dependent mechanism of protection against oxidative stress in pyruvate-ferredoxin oxidoreductase of anaerobic Desulfovibrio bacteria, Biochemistry, vol.47, pp.957-964, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00473795

A. Volbeda, M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey et al., Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas, Nature, vol.373, pp.580-587, 1995.

G. Voordouw, The genus Desulfovibrio: the centennial, Applied and environmental microbiology, vol.61, pp.2813-2819, 1995.

C. B. Walker, Z. He, Z. K. Yang, J. A. Ringbauer, . Jr et al.,

D. A. Stahl, The electron transfer system of syntrophically grown Desulfovibrio vulgaris, Journal of bacteriology, vol.191, pp.5793-5801, 2009.

S. Wang, H. Huang, J. Kahnt, A. P. Mueller, M. Kopke et al., NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO, Journal of bacteriology, vol.195, pp.4373-4386, 2013.

S. Wang, H. Huang, J. Kahnt, and R. K. Thauer, A reversible electron-bifurcating ferredoxinand NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica, Journal of bacteriology, vol.195, pp.1267-1275, 2013.

C. Welte and U. Deppenmeier, Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens, Biochimica et biophysica acta, vol.1837, pp.1130-1147, 2014.

C. Welte, C. Kratzer, and U. Deppenmeier, Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei, The FEBS journal, vol.277, pp.3396-3403, 2010.

M. J. Wolin, Interactions between H 2 -producing and methane-producing species. . Microbial production and utilization of gases, pp.14-15, 1976.

G. Zellner, P. Messner, H. Kneifel, and J. Winter, Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester, Archives of Microbiology, vol.152, pp.329-334, 1989.

T. Zheng, A. A. Lanahan, L. R. Lynd, and D. G. Olson, The redox-sensing protein Rex modulates ethanol production in Thermoanaerobacterium saccharolyticum, PloS one, vol.13, p.195143, 2018.

Y. Zheng, J. Kahnt, I. H. Kwon, R. I. Mackie, and R. K. Thauer, Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase, Journal of bacteriology, vol.196, pp.3840-3852, 2014.

A. Zhou, Y. I. Chen, G. M. Zane, Z. He, C. L. Hemme et al.,

J. Zhou, Functional characterization of Crp/Fnr-type global transcriptional regulators in Desulfovibrio vulgaris Hildenborough, Applied and environmental microbiology, vol.78, pp.1168-1177, 2012.