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Comparing Different Methods
to Create a Linear Model for Uncontrolled
Manifold Analysis

Inge Tuitert
Aix-Marseille University and University of Groningen

Tim A. Valk, Egbert Otten, Laura Golenia,
and Raoul M. Bongers
University of Groningen

An essential step in uncontrolled manifold analysis is creating a linear model that
relates changes in elemental variables to changes in performance variables. Such
linear models are usually created by means of an analytical method. However, a
multiple regression analysis is also suggested. Whereas the analytical method
includes only averages of joint angles, the regression method uses the distribution
of all joint angles. We examined whether the latter model is more suitable to
describe manual reaching movements. The relation between estimated and
measured fingertip-position deviations from the mean of individual trials, the
relation between fingertip variability and nongoal-equivalent variability, goal-
equivalent variability, and nongoal-equivalent variability indicated that the linear
model created with the regression method gives a more accurate description of the
reaching data. Therefore, we suggest the usage of the regression method to create
the linear model for uncontrolled manifold analysis in tasks that require the
approximation of the linear model.

Keywords: Jacobian, motor control, uncontrolled manifold method

The uncontrolled manifold (UCM) method is a well-established approach to
assessing the coordination of multiple degrees of freedom (DoF) in synergies
that stabilize performance in human actions. The method has been applied to a
variety of actions, such as sit-to-stance, finger-force production, and goal-directed
reaching (Black, Smith, Wu, & Ulrich, 2007; Domkin, Laczko, Djupsjobacka,
Jaric, & Latash, 2005; Greve, Zijlstra, Hortobagyi, & Bongers, 2013; Klous,
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Danna-dos-Santos, & Latash, 2010; Kriiger, Borbély, Eggert, & Straube, 2012;
Romero, Kallen, Riley, & Richardson, 2015; Scholz, Schoner, & Latash, 2000;
Shim, Hsu, Karol, & Hurley, 2008; Togo, Kagawa, & Uno, 2016; Van Der Steen &
Bongers, 2011; Wu, Pazin, Zatsiorsky, & Latash, 2012; Yang, Scholz, & Latash,
2007). The current paper focuses on computational aspects of the UCM method in
goal-directed manual reaching movements to illustrate the argument. When
performing a reaching movement, the DoF, that is, the joint angles of the arm,
have to be coordinated to stabilize the index-finger position. To assess how the
joint angles are coordinated, the UCM method is applied to evaluate the variability
in the joint angles across trials. Joint-angle variability is partitioned into variability
that does not influence the index-finger position (goal-equivalent variability, GEV)
and variability that does (nongoal-equivalent variability, NGEV). If there is more
GEYV than NGEV, it is assumed that the joint angles of the arm are coordinated into
a synergy that stabilizes the index-finger position.

The computation of GEV and NGEV with the UCM method requires four
steps (Latash, Scholz, & Schoner, 2007). The first two steps consist of selecting the
elemental variables and the performance variable, respectively. In goal-directed
manual reaching, elemental variables are usually the nine joint angles of the arm
(shoulder, elbow, wrist, and finger-joint angles) while the 3D position of the tip of
the index finger is the performance variable. Subsequently, small changes in the
joint angles are related to small changes in the index-finger position by means of a
linear model (third step). These relations have to be approximated in goal-directed
manual reaching movements and are represented in a Jacobian matrix. Lastly, this
matrix is used to partition the joint-angle variability across trials. Variability within
the null-space of the Jacobian corresponds to GEV, and variability orthogonal to
the null-space corresponds to NGEV. The current paper focuses on the creation of a
linear model, which can be done either by means of an analytical method or by
means of multiple regression (see below). Although the analytical method (Scholz
& Schoner, 1999) is the most often used of the two (de Freitas & Scholz, 2010), the
regression method uses more data to create the linear model, which can influence
the accuracy with which the model describes the data. In this paper, we compare the
accuracy of the two methods in a manual reaching task.

In reaching movements, the analytical method to create the linear model (de
Freitas & Scholz, 2010; Scholz & Schoner, 1999) employs the computation of the
fingertip position with respect to the trunk, using segment origins and rotation
matrices of joint angles (i.e., the computation of forward kinematics). These
calculations express the position of the end effector (e.g., the tip of the index finger)
in the coordinate frame of the segment origin (e.g., the sternum). The resulting
expression is a function of the joint angles and the segment lengths (i.e., the
geometry of the kinematic chain). We refer to these calculations as geometric
transformations, which are typically obtained from motion capture data. The
rotation matrices used for geometric transformations are computed from average
joint-angle configurations across repeated trials. To generate the linear model using
the analytical method, the model is composed of the partial derivatives of the
geometric transformations; this approach is often used for UCM analysis in the
literature (de Freitas & Scholz, 2010; Scholz & Schoner, 1999).

When multiple regression analysis (de Freitas & Scholz, 2010; de Freitas,
Scholz, & Latash, 2010; Krishnamoorthy, Scholz, & Latash, 2007) is applied, the

(Ahead of Print)



Motor Control

Methods to Create a Linear Model for UCM Analysis 3

linear model is created by entering the joint angles as independent variables and the
index-finger position as the dependent variable. Their relative relationships are
described in the regression equations (see Equation 1; a separate equation is used
for each direction of the fingertip position). In Equation 1, ¥ is the y value on the
best-fit plane corresponding to x;, where b, are the coefficients, c is the constant,
and k is the number of joints (Maxwell & Delaney, 1990; Zaiontz, 2018). To
estimate the coefficients of the multiple regression equation, a least squares error
solution is used (see Equation 2). In Equation 2, y is a vector with the y values of all
trials (i.e., the position of the index finger), x is a vector with the x values of all trials
(i.e., joint angles), resulting in a solvable equation with k unknowns (b,, is a vector
including b,-b;) in j equations (maximum of j is k; independent counter; for a
mathematical description of all steps to get from Equation 1 to Equation 2, see
Zaiontz, 2018). Note that to compute the coefficients, the covariance among all the
joint angles and the covariance among all joint angles and the fingertip position are
used. The coefficients (b1—by) of the multiple regression analysis, representing
partial derivatives, compose the linear model. The constant of the multiple
regression equation (c) is not included in the Jacobian because this was the
average of the end-effector position (¢ =y, see Zaiontz, 2018). Until now, in UCM
analysis, the regression method to create the linear model has only been used when
geometric transformations of the relations between elemental and performance
variables were not available (e.g., when using electromyography; Krishnamoorthy
et al., 2007). We propose that the regression method to create the linear model
should be considered, even when geometric transformations are available.

j}=c+b1x1+b2x2—|— +bkxk, (1)

k

cov(y, x;) = me - COV(Xy, X;). 2)

m=

To understand why the accuracy of the two linear models described above might
differ, the dissimilarities between the two need closer examination, especially since
the two methods intuitively seem to be similar. The essence is that the regression
method uses different movement data than the analytical method does. The latter
method only uses the averages of all joint angles and the averages of the 3D origins
of the segments. The regression method, on the other hand, uses the (co)variance of
the joint angles and the fingertip positions of all trials to estimate each of the
coefficients (b;—b;) that make up the Jacobian. This implies that the regression
method takes into account the distribution of the data, whereas the analytical method
does not. To examine this we compared the two methods to describe goal-directed
reaching movements, expecting that the linear model based on the regression method
would be more accurate than that based on the analytical method.

Methods

Participants

The dataset used in the current paper was a subset of data presented in Valk,
Mouton, and Bongers (2016) and consisted of the data on the simple reaching
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condition obtained from 15 participants, of whom seven were men (mean age: 21.3
years; SD: 1.4 years) and eight women (mean age: 20.5 years; SD: 1.8 years). The
study had ethical approval and all participants gave their informed consent.

Procedure

Participants were seated on a chair in front of a table. The backrest of the chair was
extended with a plate to which the trunk of the participant was gently strapped to
prevent movements of the origin (i.e., the sternum) while keeping the shoulder at
approximately the same position in space without restricting shoulder motions. At
the start of each trial, participants placed the index finger of the right dominant
hand on the start location, a 1-cm diameter circle on the table, while resting the
elbow on an arm rest to standardize the starting posture as much as possible across
trials. Following a “go” signal presented verbally by the experimenter, participants
performed a forward movement in the sagittal plane to reach the 1-cm diameter
target circle located 30 cm anterior of the start position. The experiment comprised
atotal of 50 trials. Participants were instructed to perform the movement as fast and
as accurately as possible but were free to initiate the movement at their own
convenience following the “go” signal.

Materials and Data Collection

Movements were recorded using the Optotrak 3020 system (Northern Digital,
Waterloo, Ontario). Using skin-friendly tape, six rigid PVC plates, each with three
infrared light-emitting diodes, were attached to the participant’s sternum, to the
acromion, on the left side of the right upper arm below the insertion of the deltoid,
proximal to the ulnar and radial styloids, to the dorsal surface of the hand (van Andel,
Wolterbeek, Doorenbosch, Veeger, & Harlaar, 2008), and to the index finger (Van
Der Steen & Bongers, 2011). Following the procedure described by van Andel et al.
(2008), for each individual participant, the 19 anatomical positions were recorded
together with the rigid body position data using a standard pointer device. A small
aluminum plate was taped under the index finger to prevent flexion—extension in the
interphalangeal joints while allowing for flexion—extension and adduction—abduc-
tion in the metacarpophalangeal joint (Van Der Steen & Bongers, 2011).

Preprocessing

The position data of the rigid bodies and their relation to the 19 anatomical
positions in the calibration trials were used to compute the positions of the 19
anatomical positions in the global reference frame in measurement trials. X-Y-Z
velocities were derived using the three-point central difference method. Tangential
velocity was calculated at each point in time as the square root of the sum of the
three squared velocities. For each trial, movement termination was determined by
searching forward from the moment at which peak tangential velocity was reached.
The end of the movement was identified as the first data point at which the
tangential velocity fell below a speed of 2.5 cm/s and the position of the pointer tip
fell within a radius of 1 cm around the target. The instant of movement termination
was used in the analyses. Averages of variables were calculated across trials at
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movement termination. For more information about the data collection and
analysis, see Valk et al. (2016).

UCM Method

The UCM was calculated at movement termination using the four steps introduced
earlier. These four steps are described in more detail below. At Step 3, we explain
both the analytical and regression method to create the linear model.

Selection of the elemental variables. The elemental variables selected were the
nine joint angles of the arm (0,_o): shoulder plane of elevation (0;), shoulder angle
elevation (0,), shoulder endorotation—exorotation (05), elbow flexion—extension
(04), forearm pronation—supination (8s), wrist abduction—adduction (6¢), wrist
flexion—extension (6,), finger abduction—adduction (0g), and finger flexion—
extension (69). These joint angles were computed following International Society
of Biomechanics guidelines for the upper extremity (Wu et al., 2005).

Selection of the performance variable. The performance variable selected was
the 3D fingertip position (ry, ry, rz). According to the International Society of
Biomechanics guidelines, the coordinate system was defined as follows: positive X
was the forward position, positive Y the upward position, and positive Z the
rightward position.

Creating a linear model of the system. The deviation from the mean of the
performance variable Ar; relates to the deviation from the mean of the joint
configuration A9; as:

Arj =JXAGJ, (3)

where J is a Jacobian matrix (see Equation 4) and j represents the trial. The
Jacobian was computed as follows:

oy . O
50, 56,
J= . . s 4)
Sy .. 3
0, 56,

The elements of this matrix were the partial derivatives of the coordinates of the
performance variable with respect to each joint angle.

Analytical method: The analytical partial derivative was calculated using geomet-
ric transformations of joint-angle means and segment-origin means. These trans-
formations are shown in Equation 5, where Rg;_g9 are the rotation matrices of each
angle (number for each angle, see Selection of the Elemental Variables section),
D, _s the positions of the segments’ origins with respect to the sternum (i.e., the
origin of the segment chain): D;: glenohumeral, D,: ulnar styloid, D;: metacarpal
3, D4: metacarpophalangeal 2, Ds: fingertip, and r the position of the fingertip in
three directions. The Jacobian is obtained by differentiating equation 5 with respect
to the independent variables (i.e., joint angles). The results of these computations
are united the Jacobian matrix to create the linear model (de Freitas & Scholz,
2010; Scholz & Schoéner, 1999).
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r =Dy + Rg1RgyRp3 D> + Ry RorRo3Re4RosD3 + Ry RorRg3RpaRosRosRg7 D,
+ Rg1Re2Rg3Re4Ro5Ro6 Ro7Ro3 Reo Ds . (@)

Regression method: Contrary to the previous method where the mean across trials
was used to create the linear model, in the multiple regression method the co
(variance) across trials was included. In the multiple regression analysis (de Freitas
& Scholz, 2010; de Freitas et al., 2010; Krishnamoorthy et al., 2007), the
dependent variable was the fingertip position and the independent variables
were the joint angles. The multiple regression equation and the least square error
solution equation are shown in Equations 1 and 2. Three separate multiple linear
regression analyses were run for each dimension of the fingertip position. The
constants of the regressions were excluded from the model because these were the
averages of the end-effector positions (c =y, see Zaiontz, 2018; note that this was
the case because the regressions were not run ‘mean-free’ as done by de Freitas et
al., 2010; de Freitas & Scholz, 2010). The coefficients of the regression analysis
composed the linear model, which were equal to g »_that is, the partial derivative of
the regression formula to a certain joint angle, Wthh made these coefficients
suitable as a linearized model (where n was the dimension of the fingertip position
and m was the number of the joint angle).

Partitioning of variance into GEV and NGEV. The variance per DoF was
partitioned into two components: GEV and NGEV (see Scholz & Schoner, 1999).
The null-space of J represented those changes in the joint-an é{le configurations that
did not cause any changes in the performance variable: A=Y Variance that did
not affect the performance variable (GEV) and corresponded to the variance per
DoF, which lay within the null-space of J, was defined as:

GEV?
GEv= 29" )

Here, DF is the number of involved DoF; in our reaching example, DF was 9 and
DV, the dimension of the 1\Performance variable, was 3. The variance affecting the
performance variable (A8 “*Y; NGEV) and corresponding to the variance per DoF
of the orthogonal component was defined as:

eNGEV2

NGEV = ———. 0
DV

Testing the Linearized Models

To test these linearized models, we used three measures: (a) the estimated fingertip-
position deviations from the mean of individual trials, (b) the relation between the
fingertip variability and NGEV, and (c) GEV and NGEV.

Estimated fingertip-position deviations from the mean of individual trials. We
computed the difference between the estimated fingertip positions and the mean
fingertip positions for the two methods, after which we compared the differences to
the measured fingertip-position deviations from the mean for all individual trials. We
computed the relations between these two dependent variables for the two methods
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separately (i.e., based on the analytical and the regression method, respectively). The
method for which this relation was strongest described the data better.

The estimated fingertip-position deviations from the mean of the linearized
models were calculated using Equation 3 (following Scholz & Schoner, 1999). For
each of the two linearized models, the joint-angle deviations from the mean (Gj -0)
were computed for each trial and were subsequently multiplied with the Jacobian
matrix. Two sets (each based on one of the linear models) of three vectors (one
vector for each dimension of the index finger) were obtained, representing the
estimated deviation of individual trials from the mean fingertip position (A7;).

To compare these estimated fingertip-position deviations from the mean (A7;)
to the measured position deviations from the mean (Ar;), we calculated the Pearson
correlation coefficient (PCC) between A#; and Ar; for each individual participant
and dimension. A correlation was valued as high if PCC was greater than .6 and as
medium if PCC was greater than .4 and less than .6 (Cohen, 1988). A multivariate
analysis of variance (MANOVA) of PCC with the three directions as dependent
variables and method (analytical method and regression method) as a within-
subject variable was conducted to compare the PCCs of the linear model created
with the analytical method and the linear model created with the regression method
for all directions. Furthermore, we fitted a regression line through the data of two
participants, one participant with a low end-effector variability and one with a high
end-effector variability, to visualize the relation between A?j and Ar; for each
method in different situations.

Relation between fingertip variability and NGEV. We examined the relation
between the SD of the measured fingertip position at movement termination (we
refer to this as the fingertip variability) and NGEV for the two methods. If the data
were described appropriately by the linear model, then there should be a relation
between the fingertip variability and NGEV.

Fingertip variability was computed as the SD of the tangential fingertip
positions at movement termination. The tangential position was calculated as
the square root of the sum of the 3D position. To examine the relation between
fingertip variability and NGEV, we calculated the PCC between these two
variables for each method. A regression line was fitted through the data to illustrate
this relation for each method.

GEV and NGEV. We compared the GEV and NGEV of the linear models created
using the two methods. The manual reaching task is a simple task for which it has
been repeatedly shown that the position of the index finger is stabilized, showing
that GEV is larger than NGEV (Tseng, Scholz, & Schoner, 2002; Van Der Steen &
Bongers, 2011; Yang et al., 2007). Moreover, the data used in the current study
showed a low variability of the index finger at the end of the movement (Valk et al.,
2016). This underscores the notion that, if the linear model is a good description of
the data, then the stabilization of the index finger, as reflected by a high GEV and a
low NGEV, is stronger.

To compare GEV and NGEV of the two linear models, we conducted a
MANOVA with GEV and NGEV as dependent variables and method (analytical
method and regression method) as a within-subject variable. To correct for
nonnormal data distributions, GEV and NGEV were log-transformed prior to
statistical analysis (Verrel, 2010), as indicated by the subscript log.
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Additionally, we quantified the difference between the two Jacobians by
comparing the null-space and the orthogonal space of the Jacobians of the two
methods through the cosine of principal angles (Golub & Loan, 1996). This
analysis reveals the shared dimensions by the subspaces. The threshold for
similarity was set at 0.9 (Muceli, Falla, & Farina, 2014).

For all statistical analyses the level of significance was set at a=.05. All
variables that were subjected to statistical analyses were normally distributed
according to the Kolmogorov—Smirnov test (ps <.05).

Results

Estimated Fingertip-Position Deviations from the Mean of
Individual Trials

The MANOVA of the correlation between the estimated and measured fingertip-
position deviations from the mean revealed a significant effect of method, F(3, 12)
=53.93, p <.001. The separate univariate analysis of variances on the X: F(1, 14) =
53.34, p<.001; Y: F(1, 14)=112.57, p <.001; and Z directions: F(1, 14)=47.18,
p <.001, indicated that PCCs were higher in the regression method compared with
the analytical method in all directions (see Figure 1). Figure 2, which depicts the
relations between A7; and Ar; for a participant with low and a participant with high

J
fingertip variability, elucidates that the linearized model created with the regression

8 r & x
—&—v
z
6
4t

PCC
—e—

Analytical Regression

Figure 1 — Means and SEs of the correlations between A7; and Ar; for the analytical and
the regression method to compute the linear model and each dimension of the position of the
index finger (X, Y, and Z). PCC = Pearson correlation coefficient.
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Analytical Analytical

A (mm)
A (mm)

Ay (mm)

Regression Regression

A (mm)

Ar; (mm) A rj (mm)

Figure 2 — Relations between A7; of the linearized model and Ar; for each method in a
separate plot and each direction in a different color (top row: analytical method; bottom row:
regression method). The dashed black line represents the hypothesis where A7; and Ar; show
a PCC of 1. The left panels show the least variable participant and the right panels the most
variable participant (end-effector variability). The shades of gray for the different directions
are as follows: X direction in dark gray, Y direction in gray, and Z direction in light gray.
Note that the axes of the upper panels are different from the axes of the lower panels. PCC =
Pearson correlation coefficient.

method revealed a higher correlation between A#; and Ar; in all movement
directions (PCCs > .42; see Figure 2, lower panels) than that of the analytical
method (PCCs <.17; see Figure 2, top panels) for participants with low and high
fingertip variability. To check whether the regression method had higher correla-
tions than the analytical method for the complete movement, we also calculated the
correlations between A7; and Ar; at each instant of the (time-normalized) movement
trajectory. Visual inspection of these correlations also revealed higher correlations

(Ahead of Print)



Motor Control

10 Tuitert et al.

for the linearized model created with the regression method than for the analytical
method in 100% of the instances in all movement directions. Taken together, these
results supported our expectation that the estimated position deviations from the
mean of the index finger computed using the regression-based linear model
described the data better than those computed using the analytical linear model.

Relation Between Fingertip Variability and NGEV

The PCC of the relation between the fingertip variability and NGEV (see Figure 3)
was medium to high in the linear model created with the regression method
(r=.59), whereas it was very low in the model created using the analytical method
(r=-.01). This result suggested that in the linear regression model joint-angle
variability was partitioned into NGEV when appropriate, whereas this was not the
case in the analytical model.

GEV and NGEV

The MANOVA of GEV,,, and NGEV,,, comparing the models generated by the
two methods revealed a significant method effect, F(2, 13)=7.94, p=.006.
Separate univariate analysis of variances on GEV),, and NGEV),, indicated
that, in the regression-based model, more joint-angle variability was partitioned
into GEV o, F(1, 14)=14.02, p=.002, and less into NGEV),, F(1, 14) =16.67,
p=.001, than in the analytical-based model (see Figure 4). Given the small
variability of the position of the index finger, these results suggested that the
linear model created through regression described the data best.

To examine the orientations of the Jacobians for the two methods, we
compared the null-space and orthogonal space of both Jacobians separately using
the cosine of principle angles and found the averages across participants to be
higher than the similarity criterion of 0.9 for the first four dimensions of the null-
space and for all three dimensions of the orthogonal space. This indicated that the
differences between the Jacobians of the regression and analytical methods used to
create the linear model were in the fifth and the sixth dimensions of the null-space,
implying that the subspaces of the two Jacobians were different, and, therefore, that
the regression-based and analytical Jacobians were indeed different, and the
differences between the two methods on the other measures were valid.

Discussion

When multijoint coordination is studied with the UCM method, the linear model
is usually created using the analytical method rather than a regression method.
One major difference between the two approaches is that in the analytical method
only the averages of joint angles are used, whereas in the regression method the
distribution of angular values of the joints and positional values of the end-effector
across repetitions are used. Comparing the two linear models using data obtained in
a manual reaching task, we first found higher correlations between the estimated
and the measured fingertip-position deviations from the mean in the regression-
based linear model. Second, the relationship between fingertip variability and
NGEYV indicated that, if the linear model was created with the regression method,
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Figure 3 — The relation between fingertip variability and NGEV for each method, where
each triangle represents one participant. Note that the y axis of the upper panel is different

from the y axis of the lower panel. NGEV = nongoal-equivalent variability.
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Figure 4 — Means and SEs of the means of GEV and NGEV for the analytical and the
regression method. NGEV =nongoal-equivalent variability; GEV = goal-equivalent
variability; DoF = degrees of freedom.

an appropriate amount of joint-angle variability was partitioned into NGEV,
whereas this was not the case if the linear model was created analytically.
Moreover, we showed that with the regression method more joint-angle variability
was partitioned into GEV and less into NGEV. Taken together, these results
demonstrated that the linear model created with the regression method provided a
more accurate description of the data in the goal-directed reaching task, which is
why we propose using the regression method to create the linear model for UCM
analysis when analyzing reaching data.

Although we only examined goal-directed reaching, we argue that this
recommendation can be extended to other actions, such as in sit-to-stance or
walking. We hypothesized that the regression method described the data better than
the analytical method because it incorporated the distribution of the joint angles
and fingertip positions across repetitions into the linear model, whereas the
analytical method considered only the averages of the joint angles and origins
of the segments. Confirming our assumption, we have shown the added value of
including these changes across repetitions in the analysis. Given that the distribu-
tion of the data across repetitions of the performance variable and the elemental
variables also plays a role in other motor tasks, including this distribution in the
creation of the model may also improve the linear model for these tasks. Note that
this recommendation applies only to tasks in which the linear model has to be
approximated. In tasks that are by definition linear, the regression method should
not be considered. This is, for instance, the case in a finger force-production task
where a certain amount of force needs to be exerted with four fingers (DoF) at a
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certain point in time (Kang, Shinohara, Zatsiorsky, & Latash, 2004; Shinohara,
Scholz, Zatsiorsky, & Latash, 2004). Here, the production of the total force is a
linear combination of the four DoF and hence an exact linear model, which makes
the use of the regression method superfluous. It is for tasks that require a linear
approximation (i.e., tasks that are not exactly linear) that we suggest using the
regression method to describe the data more accurately.

To do a UCM analysis of a reaching task, a linear approximation of the
relations between changes in joint angles and changes in fingertip position is used,
although these relations are actually nonlinear (Latash et al., 2007; Schéner &
Scholz, 2007). This is exemplified by a 3D plot with a curved (nonlinear) solution
manifold in which three joint angles (three axes) keep the fingertip at one specific
location at an instant in time. If the joint-angle ranges across repetitions are small,
only a small part of this curved manifold is exploited, allowing this part to be
approximated by a linear model because in a small part of the manifold the
deviations from linearity are small. Given that in our simple reaching task the
ranges of the joint-angle rotations across repetitions are small and the estimated
deviations from the mean of the fingertip do not differ much from the measured
deviations from the mean, the nonlinear behavior is suitable for approximation
using a linear model (Ambike, Mattos, Zatsiorsky, & Latash, 2016; Jacquier-Bret,
Rezzoug, & Gorce, 2009; Scholz & Schoner, 1999), facilitating the UCM analysis.

While in the current task linearization is appropriate, in other tasks where the
ranges of joint angles (or other elemental variables) across repetitions is larger, and
thus also the scattering of trials on the curved solution manifold, a linearized
manifold to approximate the solution manifold is less suitable. In such cases, one
might consider using a nonlinear method to assess variability across trials. Miiller
and Sternad (2003), for example, proposed a surrogate nonlinear data analysis that
was adapted and applied by Ambike et al. (2016; see also Reschechtko & Latash,
2017) for an inverse piano finger-force task. Having created a surrogate dataset by
randomizing the original dataset, they found the surrogate dataset to show a much
larger variance than the original one, implying that there was less covariance in the
surrogate dataset and indicating that in the original data the variance was mainly
covariance along the nonlinear solution manifold. In short, if the joint-angle ranges
in a multijoint task are small, the usage of a linearized model is appropriate,
whereas if the joint-angle ranges are larger a nonlinear method would be the better
option. Note that there are also other discussions regarding the analysis of
variability in redundant tasks (Sternad, 2018; Sternad, Park, Muller, & Hogan,
2010), but these are beyond the scope of this paper.

In conclusion, our results show that in goal-directed reaching the regression
method to create the linear model is preferred to the analytical method. We argue that
if UCM analysis is applied to tasks that require approximation of the linear model,
the use of the regression method to create the linear model should be considered.
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