S. Achard and E. Bullmore, Efficiency and cost of economical brain functional networks, PLoS Comput. Biol, vol.3, p.17, 2007.

A. D. Althouse, Adjust for Multiple Comparisons? It's Not That Simple, Ann. Thorac. Surg, vol.101, pp.1644-1645, 2016.

A. P. Anokhin, N. Birbaumer, W. Lutzenberger, A. Nikolaev, and F. Vogel, Age increases brain complexity, Electroencephalogr. Clin. Neurophysiol, vol.99, pp.63-68, 1996.

A. P. Anokhin, W. Lutzenberger, and N. Birbaumer, Spatiotemporal organization of brain dynamics and intelligence: an EEG study in adolescents, Int. J. Psychophysiol, vol.33, pp.259-273, 1999.

A. P. Anokhin, W. Lutzenberger, A. Nikolaev, and N. Birbaumer, Complexity of electrocortical dynamics in children: developmental aspects, Dev. Psychobiol, vol.36, pp.9-22, 2000.

P. B. Baltes, S. W. Cornelius, A. Spiro, J. R. Nesselroade, and S. L. Willis, Integration versus differentiation of fluid/crytallized intelligence in old age, Dev. Psychol, vol.16, pp.625-635, 1980.

P. B. Baltes and U. Lindenberger, Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging?, Psychol. Aging, vol.12, pp.12-21, 1997.

P. B. Baltes and K. U. Mayer, TheBerlinAgingStudy: Aging From 70-100, 1999.

G. L. Baum, R. Ciric, D. R. Roalf, R. F. Betzel, T. M. Moore et al., Modular segregation of structural brain networks supports the development of executive function in youth, Curr. Biol, vol.27, pp.1561-1572, 2017.

G. Buzsáki and A. Draguhn, Neuronal oscillations in cortical networks, Science, vol.304, pp.1926-1929, 2004.

R. T. Canolty, K. Ganguly, S. W. Kennerley, C. F. Cadieu, K. Koepsell et al., Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.17356-17361, 2010.

R. T. Canolty and R. T. Knight, The functional role of cross-frequency coupling, Trends Cogn. Sci, vol.14, pp.506-515, 2010.

J. C. Claussen, Offdiagonal complexity: a computationally quick complexity measure for graphs and networks, Phys. A Stat. Mech. its Appl, vol.375, pp.365-373, 2007.

L. Daqing, K. Kosmidis, A. Bunde, and S. Havlin, Dimension of spatially embedded networks, Nat. Phys, vol.7, pp.481-484, 2011.

G. Deco, V. K. Jirsa, and A. R. Mcintosh, Emerging concepts for the dynamical organization of resting-state activity in the brain, Nat. Rev. Neurosci, vol.12, pp.43-56, 2011.

G. Fagiolo, Clustering in complex directed networks, Phys. Rev. E, vol.76, p.26107, 2007.

P. Fries, Rhythms for Cognition: Communication through Coherence, Neuron, vol.88, pp.220-235, 2015.

D. D. Garrett, N. Kovacevic, A. R. Mcintosh, and C. L. Grady, The importance of being variable, J. Neurosci, vol.31, pp.4496-4503, 2011.

D. D. Garrett, I. E. Nagel, C. Preuschhof, A. Z. Burzynska, J. Marchner et al., Amphetamine modulates brain signal variability and working memory in younger and older adults, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.7593-7598, 2015.

H. E. Garrett, A developmental theory of intelligence, Am. Psychol, vol.1, pp.372-378, 1946.

P. Ghisletta and U. Lindenberger, Age-based structural dynamics between perceptual speed and knowledge in the berlin aging study: direct evidence for ability dedifferentiation in old age, Psychol. Aging, vol.18, pp.696-713, 2003.

P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenom, vol.9, pp.189-208, 1983.

I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl, vol.414, pp.29-37, 2006.

G. Hülür, N. Ram, S. L. Willis, K. Warner-schaie, and D. Gerstorf, , 2015.

, Cognitive dedifferentiation with increasing age and proximity of death: withinperson evidence from the Seattle longitudinal study, Psychol. Aging, vol.30, pp.311-323

O. Jensen and L. L. Colgin, Cross-frequency coupling between neuronal oscillations, Trends Cogn. Sci, vol.11, pp.7-9, 2007.

V. Jirsa and V. Müller, Cross-frequency coupling in real and virtual brain networks, Front. Comput. Neurosci, vol.7, p.78, 2013.

J. Kim, W. , and T. , What is a complex graph?, Phys. A Stat. Mech. Appl, vol.387, pp.2637-2652, 2008.

L. Lacasa and J. Gómez-gardeñes, Correlation dimension of complex networks, Phys. Rev. Lett, vol.110, p.168703, 2013.

V. Latora and M. Marchiori, Efficient behavior of small-world networks, Phys. Rev. Lett, vol.87, 2001.

E. Leicht and M. Newman, Community structure in directed networks, Phys. Rev. Lett, vol.100, p.118703, 2008.

U. Lindenberger, U. Mayr, and R. Kliegl, Speed and intelligence in old age, Psychol. Aging, vol.8, pp.207-220, 1993.

W. Lutzenberger, N. Birbaumer, H. Flor, B. Rockstroh, E. et al., Dimensional analysis of the human EEG and intelligence, Neurosci. Lett, vol.143, p.90221, 1992.

A. R. Mcintosh, N. Kovacevic, and R. J. Itier, Increased brain signal variability accompanies lower behavioral variability in development, PLoS Comput. Biol, vol.4, p.1000106, 2008.

A. R. Mcintosh, N. Kovacevic, S. Lippe, D. Garrett, C. Grady et al., The development of a noisy brain, Arch. Ital. Biol, vol.148, pp.323-337, 2010.

A. R. Mcintosh, V. Vakorin, N. Kovacevic, H. Wang, A. Diaconescu et al., Spatiotemporal dependency of agerelated changes in brain signal variability, Cereb. Cortex, vol.24, pp.1806-1817, 2014.

V. Müller, W. Gruber, W. Klimesch, and U. Lindenberger, Lifespan differences in cortical dynamics of auditory perception, Dev. Sci, vol.12, pp.839-853, 2009.

V. Müller and U. Lindenberger, Cardiac and respiratory patterns synchronize between persons during choir singing, PLoS ONE, vol.6, p.24893, 2011.

V. Müller and U. Lindenberger, Lifespan differences in nonlinear dynamics during rest and auditory oddball performance, Dev. Sci, vol.15, pp.540-556, 2012.

V. Müller and U. Lindenberger, Hyper-brain networks support romantic kissing in humans, PLoS ONE, vol.9, p.112080, 2014.

V. Müller and U. Lindenberger, Lifespan differences in EEG network complexity and modular organization during rest and auditory oddball performance, Psychophysiology, vol.55, pp.34-136, 2018.

V. Müller, D. Perdikis, T. Von-oertzen, R. Sleimen-malkoun, V. Jirsa et al., Structure and topology dynamics of hyper-frequency networks during rest and auditory oddball performance, Front. Comput. Neurosci, vol.10, p.108, 2016.

J. P. Onnela, D. J. Fenn, S. Reid, M. A. Porter, P. J. Mucha et al., Taxonomies of networks from community structure, Phys. Rev. E -Stat, 2012.

. Nonlinear, Soft Matter Phys, vol.86, p.36104

M. Rubinov and O. Sporns, Complex network measures of brain connectivity: uses and interpretations, Neuroimage, vol.52, pp.1059-1069, 2010.

J. E. Skinner, C. M. Pratt, and T. Vybiral, A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects, Am. Heart J, vol.125, issue.93, pp.90165-90171, 1993.

R. Sleimen-malkoun, D. Perdikis, V. Müller, J. Blanc, H. Raoul et al., Brain dynamics of aging: multiscale variability of EEG signals at rest and during an auditory oddball task, vol.2, pp.1-21, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01450701

O. Sporns, C. J. Honey, and R. Kötter, Identification and classification of hubs in brain networks, PLoS ONE, vol.2, p.1049, 2007.

K. A. Tsvetanov, R. N. Henson, L. K. Tyler, A. Razi, L. Geerligs et al., Extrinsic and intrinsic brain network connectivity maintains cognition across the lifespan despite accelerated decay of regional brain activation, J. Neurosci, vol.36, pp.3115-3126, 2016.

F. J. Varela, J. Lachaux, E. Rodriguez, and J. Martinerie, The brainweb: phase large-scale integration, Nat. Rev. Neurosci, vol.2, pp.229-239, 2001.

R. N. Vigário, Extraction of ocular artefacts from EEG using independent component analysis, Electroencephalogr. Clin. Neurophysiol, vol.103, pp.395-404, 1997.

N. X. Vinh, J. Epps, and J. Bailey, Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance, J. Mach. Learn. Res, vol.11, pp.2837-2854, 2010.

D. J. Watts and S. H. Strogatz, Collective dynamics of "small-world" networks, Nature, vol.393, pp.440-442, 1998.

D. Wechsler, Manual for the Wechsler Adult Intelligence Scale, 1955.

B. Zhou, I. Gutman, J. A. De-la-peña, J. Rada, and L. Mendoza, On spectral moments and energy of graphs, Comun. Math. Comput. Chem, vol.57, pp.183-191, 2007.