M. Fontecave and B. Py, Ollagnier de Choudens, S. & Barras, F. From Iron and Cysteine to Iron-Sulfur Clusters: the Biogenesis Protein Machineries, EcoSal Plus, vol.3, 2008.

D. C. Johnson, D. R. Dean, A. D. Smith, and M. K. Johnson, Structure, function, and formation of biological iron-sulfur clusters, Annu. Rev. Biochem, vol.74, pp.247-281, 2005.

R. Lill, J. B. Broderick, and D. R. Dean, Special issue on iron-sulfur proteins: Structure, function, biogenesis and diseases, Biochim. Biophys. Acta, vol.1853, pp.1251-1252, 2015.

B. Py and F. Barras, Building Fe-S proteins: bacterial strategies, Nat. Rev. Microbiol, vol.8, pp.436-446, 2010.

J. Balk and T. A. Schaedler, Iron cofactor assembly in plants, Annu. Rev. Plant Biol, vol.65, pp.125-153, 2014.

D. J. Netz, J. Mascarenhas, O. Stehling, A. J. Pierik, and R. Lill, Maturation of cytosolic and nuclear iron-sulfur proteins, Trends Cell Biol, vol.24, pp.303-312, 2014.

A. Roy, N. Solodovnikova, T. Nicholson, W. Antholine, and W. E. Walden, A novel eukaryotic factor for cytosolic Fe-S cluster assembly, EMBO J, vol.22, pp.4826-4835, 2003.

D. D. Leipe, Y. I. Wolf, E. V. Koonin, and L. Aravind, Classification and evolution of P-loop GTPases and related ATPases, J. Mol. Biol, vol.317, pp.41-72, 2002.

K. Bych, The iron-sulphur protein Ind1 is required for effective complex I assembly, EMBO J, vol.27, pp.1736-1746, 2008.

J. M. Boyd, J. A. Lewis, J. C. Escalante-semerena, and D. M. Downs, Salmonella enterica requires ApbC function for growth on tricarballylate: evidence of functional redundancy between ApbC and IscU, J. Bacteriol, vol.190, pp.4596-4602, 2008.

J. M. Boyd, W. P. Teoh, and D. M. Downs, Decreased transport restores growth of a Salmonella enterica apbC mutant on tricarballylate, J. Bacteriol, vol.194, pp.576-583, 2012.

J. M. Boyd, R. M. Drevland, D. M. Downs, and D. E. Graham, Archaeal ApbC/Nbp35 homologs function as iron-sulfur cluster carrier proteins, J. Bacteriol, vol.191, pp.1490-1497, 2009.

A. Hausmann, The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery, Proc. Natl. Acad. Sci. USA, vol.102, pp.3266-3271, 2005.

E. V. Koonin, A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication, Nucleic Acids Res, vol.21, pp.2541-2547, 1993.

J. M. Boyd, J. L. Sondelski, and D. M. Downs, Bacterial ApbC protein has two biochemical activities that are required for in vivo function, J. Biol. Chem, vol.284, pp.110-118, 2009.

D. J. Netz, A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation, J. Biol. Chem, vol.287, pp.12365-12378, 2012.

E. J. Camire, J. D. Grossman, G. J. Thole, N. M. Fleischman, and D. L. Perlstein, The Yeast Nbp35-Cfd1 Cytosolic Iron-Sulfur Cluster Scaffold Is an ATPase, J. Biol. Chem, vol.290, pp.23793-23802, 2015.

L. J. Pallesen, N. Solodovnikova, A. K. Sharma, and W. E. Walden, Interaction with Cfd1 increases the kinetic lability of FeS on the Nbp35 scaffold, J. Biol. Chem, vol.288, pp.23358-23367, 2013.

A. Fiévet, The anaerobe-specific orange protein complex of Desulfovibrio vulgaris hildenborough is encoded by two divergent operons coregulated by ?54 and a cognate transcriptional regulator, J. Bacteriol, vol.193, pp.3207-3219, 2011.

A. Fiévet, E. Cascales, O. Valette, A. Dolla, and C. Aubert, IHF Is Required for the Transcriptional Regulation of the Desulfovibrio vulgaris Hildenborough orp Operons, PloS One, vol.9, p.86507, 2014.

S. A. Bursakov, Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas, J. Inorg. Biochem, vol.98, pp.833-840, 2004.

M. S. Carepo, S. R. Pauleta, A. G. Wedd, J. J. Moura, and I. Moura, Mo-Cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas, J. Biol. Inorg. Chem. JBIC Publ. Soc. Biol. Inorg. Chem, 2014.

B. K. Maiti, I. Moura, J. J. Moura, and S. R. Pauleta, The small iron-sulfur protein from the ORP operon binds a, Biochim. Biophys. Acta, vol.1857, pp.1422-1429, 2016.

D. J. Netz, A. J. Pierik, M. Stümpfig, U. Mühlenhoff, and R. Lill, The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol, Nat. Chem. Biol, vol.3, pp.278-286, 2007.

L. M. Rubio and P. W. Ludden, Biosynthesis of the iron-molybdenum cofactor of nitrogenase, Annu. Rev. Microbiol, vol.62, pp.93-111, 2008.

J. M. Boyd, A. J. Pierik, D. J. Netz, R. Lill, and D. M. Downs, Bacterial ApbC can bind and effectively transfer iron-sulfur clusters, Biochemistry, vol.47, pp.8195-8202, 2008.

Y. Liu, A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes, Proc. Natl. Acad. Sci, 2016.

J. Reedijk, K. Poeppelmeier, and I. I. Comprehensiveinorganic-chemistry, From Elements to Applications. V1 MainGroup Elem Incl Noble Gases V2 Transit. Elem Lanthan. Actin. V3 Bioinorg. Fundam Appl Met. Nat Living Syst Met. Toxicol. Med V4 Solid-State Mater Incl Ceram. Miner. V5 Porous Mater Nanomater. V6 Homog, p.8

C. Organomet, Chem V9 Theory Methods. 1-7196, 2013.

P. R. Gardner and I. Fridovich, Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical, J. Biol. Chem, vol.267, pp.8757-8763, 1992.

A. Fievet, Single-Cell Analysis of Growth and Cell Division of the Anaerobe Desulfovibrio vulgaris Hildenborough, Front. Microbiol, vol.6, p.1378, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452066

G. N. George, A Novel Protein-Bound Copper?Molybdenum Cluster, J. Am. Chem. Soc, vol.122, pp.8321-8322, 2000.

B. K. Maiti, L. B. Maia, S. R. Pauleta, I. Moura, and J. J. Moura, Protein-Assisted Formation of Molybdenum Heterometallic Clusters: Evidence for the Formation of S2MoS2-M-S2MoS2 Clusters with M=Fe, Co, Ni, Cu, or Cd within the Orange Protein, Inorg. Chem, vol.56, pp.2210-2220, 2017.

B. J. Vaccaro, Biological iron-sulfur storage in a thioferrate-protein nanoparticle, Nat. Commun, vol.8, 2017.

Z. Hu and J. Lutkenhaus, A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum, Mol. Microbiol, vol.47, pp.345-355, 2003.

F. Alberge, Dynamic subcellular localization of a respiratory complex controls bacterial respiration, vol.4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01203080

M. L. Genova and G. Lenaz, Functional role of mitochondrial respiratory supercomplexes, Biochim. Biophys. Acta, vol.1837, pp.427-443, 2014.

S. Govindarajan, K. Nevo-dinur, and O. Amster-choder, Compartmentalization and spatiotemporal organization of macromolecules in bacteria, FEMS Microbiol. Rev, vol.36, pp.1005-1022, 2012.

D. Kiekebusch and M. Thanbichler, Plasmid segregation by a moving ATPase gradient, Proc. Natl. Acad. Sci. USA, vol.111, pp.4741-4742, 2014.

G. Laloux and C. Jacobs-wagner, How do bacteria localize proteins to the cell pole?, J. Cell Sci, vol.127, pp.11-19, 2014.

L. Shapiro, H. H. Mcadams, and R. Losick, Why and how bacteria localize proteins, Science, vol.326, pp.1225-1228, 2009.

B. K. Kay, M. P. Williamson, and M. Sudol, The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.14, pp.231-241, 2000.

M. Pandelia, Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus, Proc. Natl. Acad. Sci. USA, vol.108, pp.6097-6102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00677419

G. Fritz, O. Einsle, M. Rudolf, A. Schiffer, and P. M. Kroneck, Key bacterial multi-centered metal enzymes involved in nitrate and sulfate respiration, J. Mol. Microbiol. Biotechnol, vol.10, pp.223-233, 2005.

C. Andreini, A. Rosato, and L. Banci, The Relationship between Environmental Dioxygen and Iron-Sulfur Proteins Explored at the Genome Level, PloS One, vol.12, p.171279, 2017.

. Olson, Characterization of the NifU and NifS Fe-S cluster formation proteins essential for viability in Helicobacter pylori, Biochemistry, vol.39, pp.16213-16219, 2000.

J. R. Postgate, H. M. Kent, R. L. Robson, and J. A. Chesshyre, The genomes of Desulfovibrio gigas and D. vulgaris, J. Gen. Microbiol, vol.130, pp.1597-1601, 1984.

P. A. Jordan, Y. Tang, A. J. Bradbury, A. J. Thomson, and J. R. Guest, Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB), Biochem. J, vol.344, pp.739-746, 1999.

K. Katoh and D. M. Standley, A simple method to control over-alignment in the MAFFT multiple sequence alignment program, Bioinforma. Oxf. Engl, vol.32, pp.1933-1942, 2016.

M. Gouy, S. Guindon, and O. Gascuel, SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building, Mol. Biol. Evol, vol.27, pp.221-224, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511794

A. Criscuolo, S. Gribaldo, and . Bmge, Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evol. Biol, vol.10, p.210, 2010.

M. N. Price, P. S. Dehal, and A. P. Arkin, FastTree 2 -Approximately Maximum-Likelihood Trees for Large Alignments, PLOS ONE, vol.5, p.9490, 2010.

S. F. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

L. Nguyen, H. A. Schmidt, A. Von-haeseler, and B. Q. Minh, IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies, Mol. Biol. Evol, vol.32, pp.268-274, 2015.

I. Letunic and P. Bork, Interactive tree of life (iTOL)v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res, vol.44, pp.242-245, 2016.