C. Daremberg, . Hippocrate, and . Paris, Chez Lefèvre, vol.1843

V. Baumans, Science-based assessment of animal welfare: laboratory animals, Rev Sci Tech, vol.24, pp.503-517, 2005.

J. Richmond, The 3Rs-Past, present and future, Scand J Lab Anim Sci, vol.27, pp.84-92, 2000.

I. Veissier, Expérimentation animale: biologie, éthique, réglementation, INRA Prod Anim, vol.12, pp.365-75, 1999.

C. Eisemann, W. Jorgensen, and D. Merritt, Do insects feel pain? -A biological view, Experientia, vol.40, pp.164-67, 1984.

E. Tacconelli and N. Magrini, Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, pp.7-13, 2017.

G. Sheehan, A. Garvey, M. Croke, and K. Kavanagh, Innate humoral immune defences in mammals and insects: The same, with differences?, Virulence, vol.9, pp.1625-1664, 2018.

K. Kavanagh and E. Reeves, Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens, FEMS Microbiol Rev, vol.28, pp.101-113, 2004.

C. J. Tsai, J. M. Loh, and T. Proft, Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing, Virulence, vol.7, pp.214-243, 2016.

T. Pereira, P. De-barros, and L. Fugisaki, Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens, J Fungi, vol.4, p.128, 2018.

M. J. Lehane, Peritrophic matrix structure and function, Annu Rev Entomol, vol.42, pp.525-50, 1997.

J. Dalton, B. Uy, S. Swift, and S. Wiles, A Novel Restraint Device for Injection of Galleria mellonella larvae that minimizes the risk of accidental operator needle stick injury, Front Cell Infect Microbiol, vol.7, 2017.

N. Ramarao, C. Nielsen-leroux, and D. Lereclus, The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis, J Vis Exp, vol.11, p.4392, 2012.

C. Harding, G. Schroeder, and J. Collins, Use of Galleria mellonella as a Model Organism to Study Legionella pneumophila Infection, J Vis Exp, vol.81, p.50964, 2013.

M. Imran, N. Desmasures, and M. Coton, Safety assessment of Gram-negative bacteria associated with traditional French cheeses, Food Microbiol, vol.79, pp.1-10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02086922

M. Raneri, E. Pinatel, and C. Peano, Pseudomonas aeruginosa mutants defective in glucose uptake have pleiotropic phenotype and altered virulence in non-mammal infection models, Sci Rep, vol.8, p.16912, 2018.

A. R. Brochado, A. Telzerow, and J. Bobonis, Species-specific activity of antibacterial drug combinations, Nature, vol.559, pp.259-63, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01915461

X. Liu, T. Li, and D. Wang, Synergistic Antifungal Effect of Fluconazole Combined with Licofelone against Resistant Candida albicans, Front Microbiol, vol.8, p.2101, 2017.

S. Barnoy, H. Gancz, and Y. Zhu, The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence, Gut Microbes, vol.8, pp.335-50, 2017.

E. Delarze, F. Ischer, D. Sanglard, and A. T. Coste, Adaptation of a Gaussia princeps Luciferase reporter system in Candida albicans for in vivo detection in the Galleria mellonella infection model, Virulence, vol.6, pp.684-93, 2015.

P. Manohar, A. Tamhankar, C. Lundborg, and R. N. , Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131, PLoS One, vol.13, p.206278, 2018.

A. Lange, S. Beier, and D. Huson, Genome Sequence of Galleria mellonella

, Genome Anounc, vol.6, pp.1220-1237, 2018.

O. Champion, S. Wagley, and R. Titball, Galleria mellonella as a model host for microbiological and toxin research, Virulence, vol.7, pp.840-885, 2016.

M. Eisenhardt, P. Schlupp, and F. Höfer, The therapeutic potential of the insect metalloproteinase inhibitor against infections caused by Pseudomonas aeruginosa, J Pharm Pharmacol, vol.71, pp.316-344, 2019.

T. Candela, A. Fagerlund, and C. Buisson, CalY is a major virulence factor and a biofilm matrix protein, Mol Microbiol, 2018.

F. Cools, E. Torfs, and B. Vanhoutte, Streptococcus pneumoniae galU gene mutation has a direct effect on biofilm growth, adherence and phagocytosis in vitro and pathogenicity in vivo, Pathog Dis, vol.76, 2018.

C. Michaux, C. Martini, and K. Shioya, CspR, a Cold Shock RNA-Binding Protein Involved in the Long-Term Survival and the Virulence of Enterococcus faecalis, J Bact, vol.194, pp.6900-6908, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02180927

J. Bender, T. Wille, and K. Blank, LPS Structure and PhoQ Activity Are Important for Salmonella typhimurium Virulence in the Gallleria mellonella Infection Model, PLoS One, vol.8, p.73287, 2013.

F. Lebreton, L. Bras, F. Reffuveille, and F. , Galleria mellonella as a model for studying Enterococcus faecium host persistence, J Mol Microbiol Biotechnol, vol.21, pp.191-96, 2011.

G. Repizo, S. Gagné, and M. Foucault-grunenwald, Differential Role of the T6SS in Acinetobacter baumannii Virulence, PLoS One, vol.10, p.138265, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02001324

A. Lo-sciuto, A. Martorana, and R. Fernández-piñar, Pseudomonas aeruginosa LptE is crucial for LptD assembly, cell envelope integrity, antibiotic resistance and virulence, Virulence, vol.9, pp.1718-1751, 2018.

H. Hardin-pouzet, S. Morosan, and S. , Organismes-modèles et réglementation de la recherche animale, Med Sci (Paris), vol.35, pp.153-159, 2019.

T. Tableau and I. , Utilisation de la teigne G. mellonella pour la caractérisation de gènes impliqués dans le processus infectieux de différents pathogènes. Le mode d'infection et la dose utilisée sont indiqués