L. J. Piddock, Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria, Clin. Microbiol. Rev, vol.19, pp.382-402, 2006.

X. Z. Li, P. Plésiat, and H. Nikaido, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria, Clin. Microbiol. Rev, vol.28, pp.337-418, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01695304

, Scientific RepoRts |, vol.9, p.2906, 2019.

L. J. Piddock, Multidrug -resistance efflux pumps -not just for resistance, Nat. Rev. Microbiol, vol.4, pp.629-636, 2006.

J. L. Martinez, Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems, FEMS Microbiol. Rev, vol.33, pp.430-449, 2009.

M. Alcalde-rico, S. Hernando-amado, P. Blanco, and J. L. Martínez, Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence, Front. Microbiol, vol.7, pp.1-14, 2016.

X. R. Bina, D. Provenzano, N. Nguyen, and J. E. Bina, Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine, Infect. Immun, vol.76, pp.3595-3605, 2008.

S. J. Quillin, K. T. Schwartz, and J. H. Leber, The novel Listeria monocytogenes bile sensor BrtA controls expression of the cholic acid efflux pump MdrT, Mol. Microbiol, vol.81, pp.129-142, 2011.

V. Urdaneta and J. Casadesús, Adaptation of Salmonella enterica to bile: essential role of AcrAB-mediated efflux, Environ. Microbiol, vol.20, pp.1405-1418, 2018.

A. M. Buckley, The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis, Cell. Microbiol, vol.8, pp.847-856, 2006.

L. M. Bogomolnaya, The ABC-type efflux pump MacAB protects Salmonella enterica serovar typhimurium from oxidative stress, MBio, vol.4, pp.630-643, 2013.

X. Wang-kan, Lack of AcrB efflux function confers loss of virulence on Salmonella enterica serovar Typhimurium, MBio, vol.8, pp.968-985, 2017.

D. L. Taylor, X. R. Bina, and J. E. Bina, Vibrio cholerae vexH encodes a multiple drug efflux pump that contributes to the production of cholera toxin and the toxin co-regulated pilus, PLoS One, vol.7, p.38208, 2012.

Y. Hirakata, Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa, J. Exp. Med, vol.196, pp.109-118, 2002.

Y. T. Lin, Y. W. Huang, S. J. Chen, C. W. Chang, and T. C. Yang, The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice, Antimicrob. Agents Chemother, vol.59, pp.4067-4073, 2015.

H. Sakhtah, The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development, Proc. Natl. Acad. Sci. USA, vol.113, pp.3538-3547, 2016.

J. Lin, O. Sahin, L. O. Michel, and Q. Zhang, Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni, Infect. Immun, vol.71, pp.4250-4259, 2003.

A. E. Jerse, Estradiol-treated female mice as surrogate hosts for Neisseria gonorrhoeae genital tract infections, Front. Microbiol, vol.2, p.107, 2011.

H. C. The, D. P. Thanh, K. E. Holt, N. R. Thomson, and S. Baker, The genomic signatures of Shigella evolution, adaptation and geographical spread, Nat. Rev. Microbiol, vol.14, pp.235-250, 2016.

G. N. Schroeder and H. Hilbi, Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion, Clin. Microbiol. Rev, vol.21, pp.134-156, 2008.

G. M. Pupo, R. Lan, and P. R. Reeves, Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics, Proc. Natl. Acad. Sci. USA, vol.97, pp.10567-10572, 2000.

D. A. Rasko, The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates, J. Bacteriol, vol.190, pp.6881-6893, 2008.

M. Pasqua, The intriguing evolutionary journey of enteroinvasive E. coli (EIEC) toward pathogenicity, Front. Microbiol, vol.8, p.2390, 2017.

K. J. Balbi, E. P. Rocha, and E. J. Feil, The temporal dynamics of slightly deleterious mutations in Escherichia coli and Shigella spp, Mol. Biol. Evol, vol.26, pp.345-355, 2009.

Y. Feng, Z. Chen, and S. L. Liu, Gene decay in Shigella as an incipient stage of host-adaptation, PLoS One, vol.6, p.27754, 2011.

G. Prosseda, Shedding of genes that interfere with the pathogenic lifestyle: the Shigella model, Res. Microbiol, vol.163, pp.399-406, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00947763

A. Leuzzi, Role of the SRRz/Rz1lambdoid lysis cassette in the pathoadaptive evolution of Shigella, Int. J. Med. Microbiol, vol.307, pp.268-275, 2017.

A. Leuzzi, Multifactor regulation of the MdtJI polyamine transporter in Shigella, PLoS One, vol.10, p.136744, 2015.

K. P. Nickerson, Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts, Infect. Immun, vol.85, pp.1067-1083, 2017.

D. Martino, M. L. Romilly, C. Wagner, E. G. Colonna, B. Prosseda et al., One gene and two proteins: a leaderless mRNA supports the translation of a shorter form of the Shigella VirF regulator, MBio, vol.7, pp.1860-1876, 2016.

D. Martino and M. L. , Polyamines: emerging players in bacteria-host interactions, Int. J. Med. Microbiol, vol.303, pp.484-491, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01044932

K. Nishino and A. Yamaguchi, Analysis of a complete library of putative drug transporter genes in. Escherichia coli, J. Bacteriol, vol.183, pp.5803-5812, 2001.

A. Kobayashi, H. Hirakawa, T. Hirata, K. Nishino, and A. Yamaguchi, Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance, J. Bacteriol, vol.188, pp.5693-5703, 2006.

P. J. Sansonetti, D. J. Kopecko, and S. B. Formal, Involvement of a plasmid in the invasive ability of Shigella flexneri, Infect. Immun, vol.35, pp.852-860, 1982.

H. Ashida, Shigella deploy multiple countermeasures against host innate immune responses, Curr. Opin. Microbiol, vol.14, pp.16-23, 2011.

Y. Eguchi and R. Utsumi, Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in. Escherichia coli, J. Bacteriol, vol.196, pp.3140-3149, 2014.

D. J. Eaves, V. Ricci, and L. J. Piddock, Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance, Antimicrob. Agent Chemother, vol.48, pp.1145-1150, 2004.

J. M. Blair, Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design, J. Antimicrob. Chemother, vol.70, pp.424-431, 2015.

A. Kato, Transcription of emrKY is regulated by the EvgA-EvgS two-component system in Escherichia coli K-12, Biosci. Biotechnol. Biochem, vol.64, pp.1203-1209, 2000.

Y. Eguchi, Transcriptional regulation of drug efflux genes by EvgAS, two-component system in Escherichia coli, Microbiology, vol.149, pp.2819-2828, 2003.

M. Roggiani, S. S. Yadavalli, and M. Goulian, Natural variation of a sensor kinase controlling a conserved stress response pathway in Escherichia coli, PLoS Genet, vol.13, p.1007101, 2017.

H. Tanabe, Growth phase-dependent transcription of emrKY, a homolog of multidrug efflux emrAB genes of Escherichia coli, is induced by tetracycline, J Gen Appl Microbiol, vol.43, pp.257-263, 1997.

P. Hinchliffe, Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump, FEBS Lett, vol.588, pp.3147-3153, 2014.

K. Matsumura, S. Furukawa, H. Ogihara, and Y. Morinaga, Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12, Biocontrol Sci, vol.16, pp.69-72, 2011.

X. Han, Escherichia coli genes that reduce the lethal effects of stress, BMC Microbiol, vol.10, p.35, 2010.

F. F. Offner, Ion flow through membranes and the resting potential of cells, J Membr Biol, vol.123, pp.171-82, 1991.

S. Lucchini, H. Liu, Q. Jin, J. C. Hinton, and J. Yu, Transcriptional Adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen, Infect Immun, vol.73, pp.88-102, 2005.

T. Durfee, The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse, J Bacteriol, vol.190, pp.2597-2606, 2008.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. USA, vol.97, pp.6640-6645, 2000.

I. Hautefort, M. J. Proença, and J. C. Hinton, Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells, Appl. Environ. Microbiol, vol.69, pp.7480-7491, 2003.

M. Barbagallo, A new piece of the Shigella pathogenicity puzzle: spermidine accumulation by silencing of the speG gene, PLoS One, vol.6, p.27226, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00975894

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2???CT method, Methods, vol.25, pp.402-408, 2001.