R. L. Uffen, Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate, Proc Natl Acad Sci, vol.73, pp.3298-3302, 1976.

V. A. Svetlichny, T. G. Sokolova, M. Gerhardt, M. Ringpfeil, N. A. Kostrikina et al., Carboxydothermus hydrogenoformans Gen-Nov, Sp-Nov, a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island, Syst Appl Microbiol, vol.14, pp.254-260, 1991.

G. W. Bartholomew, A. , and M. , Microbial metabolism of carbon monoxide in culture and in soil, Appl Environ Microbiol, vol.37, pp.932-937, 1979.

M. Can, F. A. Armstrong, and S. W. Ragsdale, Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase, Chem Rev, vol.114, pp.4149-4174, 2014.

C. L. Drennan, J. Heo, M. D. Sintchak, E. Schreiter, and P. W. Ludden, Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase, Proc Natl Acad Sci, vol.98, pp.11973-11978, 2001.

H. Dobbek, V. Svetlitchnyi, L. Gremer, R. Huber, and O. Meyer, Crystal structure of a carbon monoxide dehydrogenase reveals a, Science, vol.293, pp.1281-1285, 2001.

M. Kumar, W. P. Lu, L. F. Liu, and S. W. Ragsdale, Kinetic evidence that carbon monoxide dehydrogenase catalyzes the oxidation of carbon monoxide and the synthesis of acetylCoA at separate metal centers, J Am Chem Soc, vol.115, pp.11646-11647, 1993.

M. E. Anderson and P. A. Lindahl, Organization of clusters and internal electron pathways in CO dehydrogenase from Clostridium thermoaceticum: relevance to the mechanism of catalysis and cyanide inhibition, Biochemistry, vol.33, pp.8702-8711, 1994.

E. C. Wittenborn, M. Merrouch, C. Ueda, L. Fradale, C. Leger et al., Redox-dependent rearrangements of the NiFeS cluster of carbon monoxide dehydrogenase, vol.7, p.39451, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01917213

Z. G. Hu, N. J. Spangler, M. E. Anderson, J. Q. Xia, P. W. Ludden et al., Nature of the C-cluster in Ni-containing carbon monoxide dehydrogenases, J Am Chem Soc, vol.118, pp.830-845, 1996.

V. J. Derose, J. Telser, M. E. Anderson, P. A. Lindahl, and B. M. Hoffman, A multinuclear ENDOR study of the C-cluster in CO dehydrogenase from Clostridium thermoaceticum: Evidence for HxO and histidine coordination to the [Fe4S4] center, J Am Chem Soc, vol.120, pp.8767-8776, 1998.

J. H. Jeoung and H. Dobbek, Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase, Science, vol.318, pp.1461-1464, 2007.

Y. Kung, T. I. Doukov, J. Seravalli, S. W. Ragsdale, and C. L. Drennan, Crystallographic snapshots of cyanide-and water-bound C-clusters from bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase, Biochemistry, vol.48, pp.7432-7440, 2009.

E. M. Shepard, E. S. Boyd, J. B. Broderick, and J. W. Peters, Biosynthesis of complex iron-sulfur enzymes, Curr Opin Chem Biol, vol.15, pp.319-327, 2011.

R. L. Kerby, P. W. Ludden, and G. P. Roberts, In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: Molecular and physiological characterization of cooCTJ, J Bacteriol, vol.179, pp.2259-2266, 1997.

W. B. Jeon, J. J. Cheng, and P. W. Ludden, Purification and characterization of membrane-associated CooC protein and its functional role in the insertion of nickel into carbon monoxide dehydrogenase from Rhodospirillum rubrum, J Biol Chem, vol.276, pp.38602-38609, 2001.

J. Hadj-saïd, M. E. Pandelia, C. Léger, V. Fourmond, and S. Dementin, The carbon monoxide dehydrogenase from Desulfovibrio vulgaris, Biochim Biophys Acta, vol.1847, pp.1574-1583, 2015.

R. K. Watt and P. W. Ludden, The identification, purification, and characterization of CooJ. A nickel-binding protein that is co-regulated with the Ni-containing CO dehydrogenase from Rhodospirillum rubrum, J Biol Chem, vol.273, pp.10019-10025, 1998.

J. H. Jeoung, S. Goetzl, S. E. Hennig, J. Fesseler, C. Wormann et al., The extended reductive acetyl-CoA pathway: ATPases in metal cluster maturation and reductive activation, Biol Chem, vol.395, pp.545-558, 2014.

J. Timm, C. Brochier-armanet, J. Perard, B. Zambelli, S. Ollagnier-de-choudens et al., The CO dehydrogenase accessory protein CooT is a novel nickel-binding protein, Metallomics, vol.9, pp.575-583, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01655185

M. Alfano, J. Perard, R. Miras, P. Catty, and C. Cavazza, Biophysical and structural characterization of the putative nickel chaperone CooT from Carboxydothermus hydrogenoformans, J Biol Inorg Chem, vol.23, pp.809-817, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01820340

M. Alfano, J. Perard, P. Carpentier, C. Basset, B. Zambelli et al., The carbon monoxide dehydrogenase accessory protein CooJ is a histidine-rich multidomain dimer containing an unexpected Ni(II)-binding site, J Biol Chem, vol.23, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02098476

J. H. Jeoung, T. Giese, M. Grunwald, and H. Dobbek, CooC1 from Carboxydothermus hydrogenoformans is a nickel-binding ATPase, Biochemistry, vol.48, pp.11505-11513, 2009.

J. H. Jeoung, T. Giese, M. Grunwald, and H. Dobbek, Crystal structure of the ATPdependent maturation factor of Ni,Fe-containing carbon monoxide dehydrogenases, J Mol Biol, vol.396, pp.1165-1179, 2010.

M. Merrouch, M. Benvenuti, M. Lorenzi, C. Leger, V. Fourmond et al., Maturation of the [Ni-4Fe-4S] active site of carbon monoxide dehydrogenases, J Biol Inorg Chem, vol.23, pp.613-620, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01816335

S. A. Ensign, M. J. Campbell, and P. W. Ludden, Activation of the nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: kinetic characterization and reductant requirement, Biochemistry, vol.29, pp.2162-2168, 1990.

V. Svetlitchnyi, C. Peschel, G. Acker, and O. Meyer, Two membrane-associated NiFeScarbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans, J Bacteriol, vol.183, pp.5134-5144, 2001.

E. J. Kim, J. Feng, M. R. Bramlett, and P. A. Lindahl, Evidence for a proton transfer network and a required persulfide-bond-forming cysteine residue in Ni-containing carbon monoxide dehydrogenases, Biochemistry, vol.43, pp.5728-5734, 2004.

J. Zhou, J. W. Raebiger, C. A. Crawford, and R. H. Holm, Metal ion incorporation reactions of the cluster, J Am Chem Soc, vol.119, pp.6242-6250, 1997.

J. J. Moura, I. Moura, T. A. Kent, J. D. Lipscomb, B. H. Huynh et al., Interconversions of [3Fe-3S] and [4Fe-4S] clusters ? Mössbauer and electron paramagnetic resonance studies of Desulfovibrio gigas ferredoxin-II, J Biol Chem, vol.257, pp.6259-6267, 1982.

T. A. Kent, J. L. Dreyer, M. C. Kennedy, B. H. Huynh, M. H. Emptage et al., Mossbauer studies of beef heart aconitase: evidence for facile interconversions of iron-sulfur clusters, Proc Natl Acad Sci, vol.79, pp.1096-1100, 1982.

A. H. Robbins and C. D. Stout, Structure of activated aconitase ? Formation of the, Proc Natl Acad Sci, vol.86, pp.3639-3643, 1989.

R. C. Conover, J. B. Park, M. W. Adams, J. , and M. K. , Formation and properties of a NiFe3S4 cluster in Pyrococcus furiosus ferredoxin, J Am Chem Soc, vol.112, pp.4562-4564, 1990.

N. J. Spangler, M. R. Meyers, K. L. Gierke, R. L. Kerby, G. P. Roberts et al., Substitution of valine for histidine 265 in carbon monoxide dehydrogenase from Rhodospirillum rubrum affects activity and spectroscopic states, J Biol Chem, vol.273, pp.4059-4064, 1998.

C. R. Staples, J. Heo, N. J. Spangler, R. L. Kerby, G. P. Roberts et al., Rhodospirillum rubrum CO-Dehydrogenase. Part 1. Spectroscopic Studies of CODH Variant C531A Indicate the Presence of a Binuclear [FeNi] Cluster, J Am Chem Soc, vol.121, pp.11034-11044, 1999.

W. B. Jeon, S. W. Singer, P. W. Ludden, and L. M. Rubio, New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster, J Biol Inorg Chem, vol.10, pp.903-912, 2005.

T. Inoue, K. Takao, T. Yoshida, K. Wada, T. Daifuku et al., Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster, Biochem Biophys Res Commun, vol.441, pp.13-17, 2013.

W. Kabsch, XDS. Acta Crystallogr D Biol Crystallogr, vol.66, pp.125-132, 2010.

Z. Otwinowski and W. Minor, Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, pp.307-326, 1997.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, J Appl Crystallogr, vol.40, pp.658-674, 2007.

P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr D Biol Crystallogr, vol.66, pp.213-221, 2010.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr D Biol Crystallogr, vol.66, pp.486-501, 2010.

J. Painter and E. A. Merritt, Optimal description of a protein structure in terms of multiple groups undergoing TLS motion, Acta Crystallogr D Biol Crystallogr, vol.62, pp.439-450, 2006.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity: all-atom structure validation for macromolecular crystallography, The PyMOL Molecular Graphics System, vol.66, pp.12-21, 2010.

A. Morin, B. Eisenbraun, J. Key, P. C. Sanschagrin, M. A. Timony et al., Collaboration gets the most out of software, 2013.