E. S. Andreiadis, M. Chavarot-kerlidou, M. Fontecave, A. , and V. , Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells, Photochem. Photobiol, vol.87, pp.946-964, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01063100

V. Artero, M. Chavarot-kerlidou, and M. Fontecave, Splitting water with cobalt, Angewandte Chemie, vol.50, pp.7238-7266, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01063099

S. Blanchard, F. Neese, E. Bothe, E. Bill, T. Weyhermüller et al., Square planar vs tetrahedral coordination in diamagnetic complexes of nickel(II) containing two bidentate pi-radical monoanions, Inorg. Chem, vol.44, pp.3636-3656, 2005.

D. Brazzolotto, M. Gennari, N. Queyriaux, T. R. Simmons, J. Pecaut et al., Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase, Nat. Chem, vol.8, pp.1054-1060, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01979902

M. J. Campbell, Transition-metal complexes of thiosemicarbazide and thiosemicarbazones, Coord. Chem. Rev, vol.15, pp.80276-80279, 1975.

N. Coutard, N. Kaeffer, A. , and V. , Molecular engineered nanomaterials for catalytic hydrogen evolution and oxidation, Chem. Commun, vol.52, pp.13728-13748, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01385443

P. W. Du and R. Eisenberg, Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges, Energy Environ. Sci, vol.5, pp.6012-6021, 2012.

D. L. Dubois, Development of molecular electrocatalysts for energy storage, Inorg. Chem, vol.53, pp.3935-3960, 2014.

M. R. Dubois and D. L. Dubois, Development of molecular electrocatalysts for CO 2 reduction and H-2 production/oxidation, Acc. Chem. Res, vol.42, 1974.

M. R. Dubois and D. L. Dubois, The roles of the first and second coordination spheres in the design of molecular catalysts for H-2 production and oxidation, Chem. Soc. Rev, vol.38, pp.62-72, 2009.

W. T. Eckenhoff, W. R. Mcnamara, P. W. Du, and R. Eisenberg, Cobalt complexes as artificial hydrogenases for the reductive side of water splitting, Biochim. Biophys. Acta, vol.1827, pp.958-973, 2013.

T. A. Faunce, W. Lubitz, A. W. Rutherford, D. R. Macfarlane, G. F. Moore et al., Energy and environment policy case for a global project on artificial photosynthesis, Energy Environ. Sci, vol.6, pp.695-698, 2013.

A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl et al., Cobaloxime-based photocatalytic devices for hydrogen production, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00363076

, Angewandte Chemie, vol.47, pp.564-567

J. I. Goldsmith, W. R. Hudson, M. S. Lowry, T. H. Anderson, B. et al., Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production, J. Am. Chem. Soc, vol.127, pp.7502-7510, 2005.

A. Z. Haddad, S. P. Cronin, M. S. Mashuta, R. M. Buchanan, and C. A. Grapperhaus, Metal-assisted ligand-centered electrocatalytic hydrogen evolution upon reduction of a Bis(thiosemicarbazonato)Cu(II) complex, Inorg. Chem, vol.56, pp.11254-11265, 2017.

A. Z. Haddad, B. D. Garabato, P. M. Kozlowski, R. M. Buchanan, and C. A. Grapperhaus, Beyond metal-hydrides: non-transition-metal and metal-free ligand-centered electrocatalytic hydrogen evolution and hydrogen oxidation, J. Am. Chem. Soc, vol.138, pp.7844-7847, 2016.

Z. Han, W. R. Mcnamara, M. S. Eum, P. L. Holland, and R. Eisenberg, A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system, Angewandte Chemie, vol.51, pp.1667-1670, 2012.

Z. Han, L. Shen, W. W. Brennessel, P. L. Holland, and R. Eisenberg, Nickel pyridinethiolate complexes as catalysts for the light-driven production of hydrogen from aqueous solutions in noble-metal-free systems, J. Am. Chem. Soc, vol.135, pp.14659-14669, 2013.

M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. Dubois, and D. L. Dubois, A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s(-1) for H-2 production, Science, vol.333, pp.863-866, 2011.

M. Hosenuzzaman, N. A. Rahim, J. Selvaraj, M. Hasanuzzaman, A. B. Malek et al., Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation, Renew. Sust. Energy Rev, vol.41, pp.284-297, 2015.

S. E. Hosseini and M. A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development, Renew. Sust. Energy Rev, vol.57, pp.850-866, 2016.

S. Inoue, M. Mitsuhashi, T. Ono, Y. N. Yan, Y. Kataoka et al., Photo-and electrocatalytic hydrogen production using valence isomers of N2S2-type nickel complexes, Inorg. Chem, vol.56, pp.12129-12138, 2017.

J. Keizer, Non-linear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots, J. Am. Chem. Soc, vol.105, pp.1494-1498, 1983.

R. S. Khnayzer, V. S. Thoi, M. Nippe, A. E. King, J. W. Jurss et al., Towards a comprehensive understanding of visible-light photogeneration of hydrogen from water using cobalt(II) polypyridyl catalysts, Energy Environ. Sci, vol.7, pp.1477-1488, 2014.

E. Koposova, X. Liu, A. Pendin, B. Thiele, G. Shumilova et al., Influence of meso-substitution of the porphyrin ring on enhanced hydrogen evolution in a photochemical system, J. Phys. Chem. C, vol.120, pp.13873-13890, 2016.

K. Ladomenou, M. Natali, E. Iengo, G. Charalampidis, F. Scandola et al., Photochemical hydrogen generation with porphyrinbased systems, Coord. Chem. Rev, vol.304, pp.38-54, 2015.

G. Landrou, A. A. Panagiotopoulos, K. Ladomenou, and A. G. Coutsolelos, Photochemical hydrogen evolution using Sn-porphyrin as photosensitizer and a series of Cobaloximes as catalysts, J. Porphyr. Phthalocyanines, vol.20, pp.534-541, 2016.

T. Lazarides, M. Delor, I. V. Sazanovich, T. M. Mccormick, I. Georgakaki et al., Photocatalytic hydrogen production from a noble metal free system based on a water soluble porphyrin derivative and a cobaloxime catalyst, Chem. Commun, vol.50, pp.521-523, 2014.

T. Lazarides, T. Mccormick, P. Du, G. Luo, B. Lindley et al., Making hydrogen from water using a homogeneous system without noble metals, J. Am. Chem. Soc, vol.131, pp.9192-9194, 2009.

N. S. Lewis and D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.15729-15735, 2006.

W. K. Lo, C. E. Castillo, R. Gueret, J. Fortage, M. Rebarz et al., Synthesis, characterization, and photocatalytic H-2-evolving activity of a family of [Co(N4Py)(X)](n+) complexes in aqueous solution, Inorg. Chem, vol.55, pp.4564-4581, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01505631

W. Lubitz, H. Ogata, O. Rudiger, R. , and E. , Hydrogenases. Chem. Rev, vol.114, pp.4081-4148, 2014.

M. P. Mclaughlin, T. M. Mccormick, R. Eisenberg, and P. L. Holland, A stable molecular nickel catalyst for the homogeneous photogeneration of hydrogen in aqueous solution, Chem. Commun, vol.47, pp.7989-7991, 2011.

M. Natali, A. Luisa, E. Lengo, and F. Scandola, Efficient photocatalytic hydrogen generation from water by a cationic cobalt(II) porphyrin, Chem. Commun, vol.50, pp.1842-1844, 2014.

A. Panagiotopoulos, K. Ladomenou, D. Sun, V. Artero, and A. G. Coutsolelos, Photochemical hydrogen production and cobaloximes: the influence of the cobalt axial N-ligand on the system stability, Dalton Transact, vol.45, pp.6732-6738, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01301908

M. Peel, The Hydrogen Economy: The Creation of the Worldwide Energy Web and the Redistribution of Power on Earth. Tls-the Times Literary Supplement, vol.5227, pp.29-29, 2003.

Y. Pellegrin and F. Odobel, Sacrificial electron donor reagents for solar fuel production, Comptes Rendus Chimie, vol.20, pp.283-295, 2017.

N. Queyriaux, E. Giannoudis, C. D. Windle, S. Roy, J. Pecaut et al., A noble metal-free photocatalytic system based on a novel cobalt tetrapyridyl catalyst for hydrogen production in fully aqueous medium, Sustain. Energy Fuels, vol.2, pp.553-557, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01979867

N. Queyriaux, R. A. Wahyuono, J. Fize, C. Gablin, M. Wächtler et al., Aqueous photocurrent measurements correlated to ultrafast electron transfer dynamics at ruthenium tris diimine sensitized NiO photocathodes, J. Phys. Chem. C, vol.121, pp.5891-5904, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01518766

H. Rao, Z. Y. Wang, H. Q. Zheng, X. B. Wang, C. M. Pan et al., Photocatalytic hydrogen evolution from a cobalt/nickel complex with dithiolene ligands under irradiation with visible light, Catal. Sci. Technol, vol.5, pp.2332-2339, 2015.

H. Rao, W. Q. Yu, H. Q. Zheng, J. Bonin, Y. T. Fan et al., Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation, J. Power Sourc, vol.324, pp.253-260, 2016.

A. Sartorel, M. Bonchio, S. Campagna, and F. Scandola, Tetrametallic molecular catalysts for photochemical water oxidation, Chem. Soc. Rev, vol.42, pp.2262-2280, 2013.

T. Straistari, J. Fize, S. Shova, M. Reglier, V. Artero et al., A Thiosemicarbazone-nickel(II) complex as efficient electrocatalyst for hydrogen evolution, Chemcatchem, vol.9, pp.2262-2268, 2017.

T. Straistari, R. Hardré, J. Fize, S. Shova, M. Giorgi et al., Hydrogen evolution reactions catalyzed by a bis(thiosemicarbazone) cobalt complex: an experimental and theoretical study, Chem. Euro. J, vol.24, pp.8779-8786, 2018.

T. Straistari, R. Hardre, J. Massin, M. Attolini, B. Faure et al., Influence of the metal ion on the electrocatalytic hydrogen production by a thiosemicarbazone palladium complex, Euro. J. Inorg. Chem, pp.2259-2266, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01948729

S. Styring, Artificial photosynthesis for solar fuels, Faraday Discus, vol.155, pp.357-376, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01069180

Y. Tachibana, L. Vayssieres, and J. R. Durrant, Artificial photosynthesis for solar water-splitting, Nat. Photonics, vol.6, pp.511-518, 2012.

P. D. Tran, V. Artero, and M. Fontecave, Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems, Energy Environ. Sci, vol.3, pp.727-747, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01069173

P. D. Tran, L. H. Wong, J. Barber, and J. S. Loo, Recent advances in hybrid photocatalysts for solar fuel production, Energy Environ. Sci, vol.5, pp.5902-5918, 2012.

M. Wang, L. Chen, and L. C. Sun, Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts, Energy Environ. Sci, vol.5, pp.6763-6778, 2012.

M. Wang and L. C. Sun, Hydrogen production by noble-metal-free molecular catalysts and related nanomaterials, Chemsuschem, vol.3, pp.551-554, 2010.

M. C. Yin, S. Ma, C. J. Wu, and Y. T. Fan, A noble-metal-free photocatalytic hydrogen production system based on cobalt(III) complex and eosin Y-sensitized TiO2, Rsc Adv, vol.5, pp.1852-1858, 2015.

Y. J. Yuan, J. R. Tu, H. W. Lu, Z. T. Yu, X. X. Fan et al., Neutral nickel(II) phthalocyanine as a stable catalyst for visiblelight-driven hydrogen evolution from water, Dalton Transact, vol.45, pp.1359-1363, 2016.

Y. J. Yuan, Z. T. Yu, D. Q. Chen, and Z. G. Zou, Metal-complex chromophores for solar hydrogen generation, Chem. Soc. Rev, vol.46, pp.603-631, 2017.

D. Z. Zee, T. Chantarojsiri, J. R. Long, C. , and C. J. , Metal-polypyridyl catalysts for electro-and photochemical reduction of water to hydrogen, Acc. Chem. Res, vol.48, pp.2027-2036, 2015.