H. Chakdar, M. Kumar, K. Pandiyan, A. Singh, K. Nanjappan et al., Bacterial xylanases: biology to biotechnology, Biotech, vol.6, p.150, 2016.

G. Dervilly-pinel, J. Thibault, and L. Saulnier, Experimental evidence for a semiflexible conformation for arabinoxylans, Carbohydr Res, vol.330, pp.365-72, 2001.

M. Kurakake, W. Kisaka, K. Ouchi, and T. Komaki, Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass

, Appl Biochem Biotechnol Part A Enzym Eng Biotechnol, vol.90, pp.251-260, 2001.

M. Huisman, L. P. Brüll, J. E. Thomas-oates, J. Haverkamp, and H. A. Schols, Voragen AGJ. The occurrence of internal (1 ? 5)-linked arabinofuranose and arabinopyranose residues in arabinogalactan side chains from soybean pectic substances, Carbohydr Res, vol.330, pp.103-117, 2001.

P. Biely, S. Singh, and V. Puchart, Towards enzymatic breakdown of complex plant xylan structures: state of the art, Biotechnol Adv, vol.34, pp.1260-74, 2016.

M. Mechelke, D. E. Koeck, J. Broeker, B. Roessler, F. Krabichler et al., Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica-six new xylanases, three arabinofuranosidases and one xylosidase, J Biotechnol, vol.257, pp.122-152, 2017.

J. A. Linares-pastén, P. Falck, K. Albasri, S. Kjellström, P. Adlercreutz et al., Three-dimensional structures and functional studies of two GH43 arabinofuranosidases from Weissella sp. strain 142 and Lactobacillus brevis, FEBS J, vol.284, pp.2019-2055, 2017.

C. Wilkens, S. Andersen, C. Dumon, J. G. Berrin, and B. Svensson, GH62 arabinofuranosidases: structure, function and applications, Biotechnol Adv, vol.35, pp.792-804, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608677

V. Borsenberger, E. Dornez, M. L. Desrousseaux, S. Massou, M. Tenkanen et al., A1H NMR study of the specificity of ?-l-arabinofuranosidases on natural and unnatural substrates, Biochim Biophys Acta, vol.1840, pp.3106-3120, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02146175

S. Koutaniemi and M. Tenkanen, Action of three GH51 and one GH54 ?-arabinofuranosidases on internally and terminally located arabinofuranosyl branches, J Biotechnol, vol.229, pp.22-30, 2016.

M. T. Numan and N. B. Bhosle, ?-l-arabinofuranosidases: the potential applications in biotechnology, J Ind Microbiol Biotechnol, vol.33, pp.247-60, 2006.

E. Petitdemange, F. Caillet, J. Giallo, and C. Gaudin, Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic: species from decayed grass, Int J Syst Bacteriol, vol.34, pp.155-164, 1984.

J. Ravachol, R. Borne, C. Tardif, P. De-philip, and H. Fierobe, Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum, J Biol Chem, vol.289, pp.7335-7383, 2014.

C. Reverbel-leroy, S. Pagès, A. Bélaïch, J. P. Bélaïch, and C. Tardif, The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form, J Bacteriol, vol.179, pp.46-52, 1997.

L. Gal, S. Pagès, C. Gaudin, A. Bélaïch, C. Reverbel-leroy et al., Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum, Appl Environ Microbiol, vol.63, pp.903-912, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02007747

H. Maamar, O. Valette, H. Fierobe, A. Bélaïch, J. Bélaïch et al., Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1, Mol Microbiol, vol.51, pp.589-98, 2004.

L. Abdou, C. Boileau, P. De-philip, S. Pagès, H. Fierobe et al., Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element, J Bacteriol, vol.190, pp.1499-506, 2008.

H. Celik, J. Blouzard, B. Voigt, D. Becher, V. Trotter et al., A two-component system (XydS/R) controls the expression of genes encoding CBM6-containing proteins in response to straw in Clostridium cellulolyticum, PLoS ONE, vol.8, p.56063, 2013.

J. Blouzard, P. M. Coutinho, H. Fierobe, B. Henrissat, S. Lignon et al., Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses, Proteomics, vol.10, pp.541-54, 2010.

A. Ray, E. Lindahl, and B. Wallner, Improved model quality assessment using ProQ2, BMC Bioinf, vol.13, p.224, 2012.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat Protoc, vol.10, pp.845-58, 2015.

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. M. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

K. Mewis, N. Lenfant, V. Lombard, and B. Henrissat, Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization, Appl Environ Microbiol, vol.82, pp.1686-92, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439073

Y. Wang, M. Sakka, H. Yagi, S. Kaneko, H. Katsuzaki et al., Ruminiclostridium josui Abf62A-Axe6A: a tri-functional xylanolytic enzyme exhibiting ?-l-arabinofuranosidase, endoxylanase, and acetylxylan esterase activities, Enzyme Microb Technol, vol.117, pp.1-8, 2018.

D. De-sanctis, J. M. Inácio, P. F. Lindley, I. De-sá-nogueira, and I. Bento, New evidence for the role of calcium in the glycosidase reaction of GH43 arabinanases, FEBS J, vol.277, pp.4562-74, 2010.

C. Brüx, K. Niefind, A. Ben-david, M. Leon, G. Shoham et al., Crystallization and preliminary crystallographic analysis of a family 43 beta-d-xylosidase from Geobacillus stearothermophilus T-6, Acta Crystallogr Sect F Struct Biol Cryst Commun, vol.61, pp.1054-1061, 2005.

L. S. Mckee, M. J. Peña, A. Rogowski, A. Jackson, R. J. Lewis et al., Introducing endoxylanase activity into an exo-acting arabinofuranosidase that targets side chains, Proc Natl Acad Sci, vol.109, pp.6537-6579, 2012.

S. Costa, A. Almeida, A. Castro, and L. Domingues, Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system, Front Microbiol, vol.5, p.63, 2014.

B. R. De-camargo, N. J. Claassens, E. F. Noronha, S. Kengen, B. F. Quirino et al., Heterologous expression and characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Clostridium thermocellum B8, Enzyme Microb Technol, vol.109, pp.74-83, 2018.

M. Till, D. Goldstone, G. Card, G. T. Attwood, C. D. Moon et al.,

, Acta Crystallogr Sect F Struct Biol Commun, vol.70, pp.1193-1201, 2014.

A. Cartmell, L. S. Mckee, M. J. Peña, J. Larsbrink, H. Brumer et al., The structure and function of an Arabinan-specific alpha-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases, J Biol Chem, vol.286, pp.15483-95, 2011.

R. Fauré, C. M. Courtin, J. A. Delcour, C. Dumon, C. B. Faulds et al., A brief and informationally rich naming system for oligosaccharide motifs of heteroxylans found in plant cell walls, Aust J Chem, vol.62, p.533, 2009.

A. Goyal, S. Ahmed, K. Sharma, V. Gupta, P. Bule et al., Molecular determinants of substrate specificity revealed by the structure of Clostridium thermocellum arabinofuranosidase 43A from glycosyl hydrolase family 43 subfamily 16, Acta Crystallogr Sect D Struct Biol, vol.72, pp.1281-1290, 2016.

S. Ahmed, A. S. Luis, J. Bras, A. Ghosh, S. Gautam et al., A Novel ?-l-arabinofuranosidase of family 43 glycoside hydrolase (Ct43Araf ) from Clostridium thermocellum, PLoS ONE, vol.8, p.73575, 2013.

T. Tonozuka, Y. Tanaka, S. Okuyama, T. Miyazaki, A. Nishikawa et al., Structure of the catalytic domain of ?-l-arabinofuranosidase from Coprinopsis cinerea, CcAbf62A, provides insights into structure-function relationships in glycoside hydrolase family 62, Appl Biochem Biotechnol, vol.181, pp.511-536, 2017.

B. Siguier, M. Haon, V. Nahoum, M. Marcellin, O. Burlet-schiltz et al., First structural insights into ?-l-arabinofuranosidases from the two GH62 glycoside hydrolase subfamilies, J Biol Chem, vol.289, pp.5261-73, 2014.

W. Wang, G. Mai-gisondi, P. J. Stogios, A. Kaur, X. Xu et al., Elucidation of the molecular basis for arabinoxylan-debranching activity of a thermostable family GH62 ?-larabinofuranosidase from Streptomyces thermoviolaceus, Appl Environ Microbiol, vol.80, pp.5317-5346, 2014.

N. Badalato, A. Guillot, V. Sabarly, M. Dubois, N. Pourette et al., Whole proteome analyses on Ruminiclostridium ? fast, convenient online submission ? thorough peer review by experienced researchers in your field ? rapid publication on acceptance ? support for research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for

, Ready to submit your research ? Choose BMC and benefit from: cellulolyticum show a modulation of the cellulolysis machinery in response to cellulosic materials with subtle differences in chemical and structural properties, PLoS ONE, vol.12, p.170524, 2017.

C. Xu, R. Huang, L. Teng, D. Wang, C. L. Hemme et al., Structure and regulation of the cellulose degradome in Clostridium cellulolyticum, Biotechnol Biofuels, vol.6, p.73, 2013.

J. Freeman, J. L. Ward, O. Kosik, A. Lovegrove, M. D. Wilkinson et al., Feruloylation and structure of arabinoxylan in wheat endosperm cell walls from RNAi lines with suppression of genes responsible for backbone synthesis and decoration, Plant Biotechnol J, vol.15, pp.1429-1467, 2017.

D. W. Abbott, E. Ficko-blean, A. L. Van-bueren, A. Rogowski, A. Cartmell et al., Analysis of the structural and functional diversity of plant cell wall specific family 6 carbohydrate binding modules, Biochemistry, vol.48, pp.10395-404, 2009.

L. Van-den-broek, R. M. Lloyd, G. Beldman, J. C. Verdoes, B. V. Mccleary et al., Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083, Appl Microbiol Biotechnol, vol.67, pp.641-648, 2005.

W. Wang, N. Andric, C. Sarch, B. T. Silva, M. Tenkanen et al., Constructing arabinofuranosidases for dual arabinoxylan debranching activity, Biotechnol Bioeng, vol.115, pp.41-50, 2018.

L. Pouvreau, R. Joosten, S. Hinz, H. Gruppen, and H. A. Schols, Chrysosporium lucknowense C1 arabinofuranosidases are selective in releasing arabinose from either single or double substituted xylose residues in arabinoxylans, Enzyme Microb Technol, vol.48, pp.397-403, 2011.

M. Polizeli, A. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge et al., Xylanases from fungi: properties and industrial applications, Appl Microbiol Biotechnol, vol.67, pp.577-91, 2005.

R. P. De-vries, H. Kester, C. H. Poulsen, J. Benen, and J. Visser, Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides, Carbohydr Res, vol.327, pp.401-411, 2000.

T. Koseki, M. Okuda, S. Sudoh, Y. Kizaki, K. Iwano et al., Role of two ?-l-arabinofuranosidases in arabinoxylan degradation and characteristics of the encoding genes from shochu koji molds, Aspergillus kawachii and Aspergillus awamori, J Biosci Bioeng, vol.96, pp.232-273, 2003.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations