Skip to Main content Skip to Navigation
Journal articles

Using decision fusion methods to improve outbreak detection in disease surveillance

Abstract : Background When outbreak detection algorithms (ODAs) are considered individually, the task of outbreak detection can be seen as a classification problem and the ODA as a sensor providing a binary decision (outbreak yes or no) for each day of surveillance. When they are considered jointly (in cases where several ODAs analyze the same surveillance signal), the outbreak detection problem should be treated as a decision fusion (DF) problem of multiple sensors. Methods This study evaluated the benefit for a decisions support system of using DF methods (fusing multiple ODA decisions) compared to using a single method of outbreak detection. For each day, we merged the decisions of six ODAs using 5 DF methods (two voting methods, logistic regression, CART and Bayesian network - BN). Classical metrics of accuracy, prediction and timelines were used during the evaluation steps. Results In our results, we observed the greatest gain (77%) in positive predictive value compared to the best ODA if we used DF methods with a learning step (BN, logistic regression, and CART). Conclusions To identify disease outbreaks in systems using several ODAs to analyze surveillance data, we recommend using a DF method based on a Bayesian network. This method is at least equivalent to the best of the algorithms considered, regardless of the situation faced by the system. For those less familiar with this kind of technique, we propose that logistic regression be used when a training dataset is available.
Complete list of metadatas

Cited literature [54 references]  Display  Hide  Download

https://hal-amu.archives-ouvertes.fr/hal-02263741
Contributor : Isabelle Combe <>
Submitted on : Tuesday, May 19, 2020 - 5:55:00 PM
Last modification on : Friday, October 23, 2020 - 4:35:13 PM

File

s12911-019-0774-3.pdf
Publication funded by an institution

Licence


Distributed under a Creative Commons CC0 - Public Domain Dedication 4.0 International License

Identifiers

Collections

Citation

Gaëtan Texier, Rodrigue Allodji, Loty Diop, Jean-Baptiste Meynard, Liliane Pellegrin, et al.. Using decision fusion methods to improve outbreak detection in disease surveillance. BMC Medical Informatics and Decision Making, BioMed Central, 2019, 19 (1), ⟨10.1186/s12911-019-0774-3⟩. ⟨hal-02263741⟩

Share

Metrics

Record views

132

Files downloads

87