G. Texier and Y. Buisson, From outbreak detection to anticipation, Rev Epidemiol Sante Publique, vol.58, issue.6, pp.425-458, 2010.

G. Texier, Evaluation methods for temporal outbreak dectection algorithms in early warning surveillance, 2016.

D. M. Bravata, K. M. Mcdonald, W. M. Smith, C. Rydzak, H. Szeto et al., Systematic review: surveillance systems for early detection of bioterrorism-related diseases, Ann Intern Med, vol.140, issue.11, pp.910-932, 2004.

M. L. Jackson, A. Baer, I. Painter, and J. Duchin, A simulation study comparing aberration detection algorithms for syndromic surveillance, BMC Med Informat Decis Making, vol.7, p.6, 2007.

D. L. Buckeridge, Outbreak detection through automated surveillance: a review of the determinants of detection, J Biomed Inform, vol.40, issue.4, pp.370-379, 2007.

J. S. Lombardo and D. L. Buckeridge, Disease surveillance: a public health informatics approach, 2007.

G. Texier, M. Farouh, L. Pellegrin, M. L. Jackson, J. B. Meynard et al., Outbreak definition by change point analysis: a tool for public health decision, BMC Med Inform Decis Making, vol.16, p.33, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01459563

H. Chen, D. Zeng, and P. Yan, Public health syndromic surveillance systems, Infectious disease informatics: syndromic surveillance for public health and BioDefense, pp.9-31, 2010.

, Multisensor Data Fusion: From Algorithms and Architectural Design to Applications (Book). United States: Series: Devices, Circuits, and Systems, 2015.

B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, Multisensor data fusion: a review of the state-of-the-art. Information Fusion, vol.14, pp.28-44, 2013.

S. Z. Li, Encyclopedia of Biometrics: I-Z, vol.1, 2009.

H. Rolka, H. Burkom, G. F. Cooper, M. Kulldorff, D. Madigan et al., Issues in applied statistics for public health bioterrorism surveillance using multiple data streams: research needs, Stat Med, vol.26, issue.8, pp.1834-56, 2007.

H. Burkom, W. Loschen, Z. Mnatsakanyan, and J. Lombardo, Tradeoffs driving policy and research decisions in biosurveillance, Johns Hopkins APL Tech Dig, vol.27, issue.4, pp.299-312, 2008.

H. S. Burkom, L. Ramac-thomas, S. Babin, R. Holtry, Z. Mnatsakanyan et al., An integrated approach for fusion of environmental and human health data for disease surveillance, Stat Med, vol.30, issue.5, pp.470-479, 2011.

Z. R. Mnatsakanyan, H. S. Burkom, J. S. Coberly, and J. S. Lombardo, Bayesian information fusion networks for biosurveillance applications, J Am Med Inform Assoc, vol.16, issue.6, pp.855-63, 2009.

A. H. Najmi and S. F. Magruder, An adaptive prediction and detection algorithm for multistream syndromic surveillance, BMC Med Inform Decis Making, vol.5, p.33, 2005.

E. H. Lau, B. J. Cowling, L. M. Ho, and G. M. Leung, Optimizing use of multistream influenza sentinel surveillance data, Emerg Infect Dis, vol.14, issue.7, pp.1154-1161, 2008.

N. Jafarpour, D. Precup, M. Izadi, and D. Buckeridge, Using hierarchical mixture of experts model for fusion of outbreak detection methods, AMIA Annu Symp Proc, vol.2013, pp.663-672, 2013.

T. G. Dietterich, Ensemble Methods in Machine Learning, Multiple Classifier Systems: First International Workshop, pp.1-15, 2000.

G. Texier, M. L. Jackson, L. Siwe, J. B. Meynard, X. Deparis et al., Building test data from real outbreaks for evaluating detection algorithms, PLoS One, vol.12, issue.9, p.183992, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01986527

C. Centers-for-disease and P. , Outbreaks of gastroenteritis associated with noroviruses on cruise ships--United States, MMWR Morb Mortal Wkly Rep, vol.51, issue.49, pp.1112-1117, 2002.

N. Jafarpour, M. Izadi, D. Precup, and D. L. Buckeridge, Quantifying the determinants of outbreak detection performance through simulation and machine learning, J Biomed Inform, vol.53, pp.180-187, 2015.

. R-core-team, R: A language and environment for statistical computing, 2016.

G. Rossi, L. Lampugnani, and M. Marchi, An approximate CUSUM procedure for surveillance of health events, Stat Med, vol.18, issue.16, pp.2111-2133, 1999.

L. Hutwagner, W. Thompson, G. M. Seeman, and T. Treadwell, The bioterrorism preparedness and response early aberration reporting system (EARS), J Urban Health, vol.80, issue.2, pp.89-96, 2003.

C. P. Farrington, N. J. Andrews, A. D. Beale, and M. A. Catchpole, A statistical algorithm for the early detection of outbreaks of infectious disease, J R Stat Soc Ser A, vol.159, issue.3, p.547, 1996.

B. V. Dasarathy, Sensor fusion potential exploitation-innovative architectures and illustrative applications, Proc IEEE, vol.85, issue.1, pp.24-38, 1997.

D. Ruta and B. Gabrys, An overview of classifier fusion methods, Comput Inf Syst, vol.7, issue.1, pp.1-10, 2000.

L. Xu, A. Krzyzak, and C. Suen, Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE Trans Syst Man Cybernet, vol.22, issue.3, pp.418-453, 1992.

A. Sinha, H. Chen, D. G. Danu, T. Kirubarajan, and M. Farooq, Estimation and decision fusion: a survey, Neurocomputing, vol.71, pp.2650-2656, 2008.

M. I. Jordan and R. A. Jacobs, Hierarchical mixtures of experts and the EM algorithm, Neural Comput, vol.6, issue.2, pp.181-214, 1994.

A. Rahman, H. Alam, and M. C. Fairhurst, Multiple classifier combination for character recognition: revisiting the majority voting system and its variations, Document analysis systems V: 5th international workshop, pp.167-78, 2002.

D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression, 2013.

P. R. Harper, A review and comparison of classification algorithms for medical decision making, Health Policy, vol.71, issue.3, pp.315-346, 2005.

C. M. Bishop, Pattern recognition and machine learning, 2006.

L. Breiman, Classification and regression trees. Belmont: Wadsworth International Group, 1984.

T. Therneau, B. Atkinson, and B. Ripley, rpart: Recursive Partitioning and Regression Trees

M. Scutari, Learning Bayesian networks with the bnlearn R package, J Stat Softw, vol.35, issue.3, p.22, 2010.

R. Nagarajan, M. Scutari, and S. Lbre, Bayesian Networks in R: with Applications in Systems Biology, 2013.

, Norsys Software Corporation, 2019.

K. P. Kleinman and A. M. Abrams, Assessing surveillance using sensitivity, specificity and timeliness, Stat Methods Med Res, vol.15, issue.5, pp.445-64, 2006.

D. L. Buckeridge, H. Burkom, M. Campbell, W. R. Hogan, and A. W. Moore, Algorithms for rapid outbreak detection: a research synthesis, J Biomed Inform, vol.38, issue.2, pp.99-113, 2005.

L. Lam and S. Y. Suen, Application of majority voting to pattern recognition: an analysis of its behavior and performance, IEEE Trans Syst Man Cybern Syst Hum, vol.27, issue.5, pp.553-68, 1997.

B. Parhami, Voting algorithms, IEEE Trans Reliab, vol.43, issue.4, pp.617-646, 1994.

P. Verlinde, P. Druyts, G. Cholet, and M. Acheroy, Applying Bayes based classifiers for Decision fusion in a multimodal identity verification system, International symposium on pattern recognition February, 1999.

T. K. Ho, J. J. Hull, and S. N. Srihari, Decision combination in multiple classifier systems, IEEE Trans Pattern Anal Mach Intell, vol.16, issue.1, pp.66-75, 1994.

A. Altmann, M. Rosen-zvi, M. Prosperi, E. Aharoni, H. Neuvirth et al., Comparison of classifier fusion methods for predicting response to anti HIV-1 therapy, PLoS One, vol.3, issue.10, p.3470, 2008.

T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction, 2009.

D. Mcneish, On using Bayesian methods to address small sample problems, Struct Equ Model Multidiscip J, vol.23, issue.5, pp.750-73, 2016.

M. Ducher, E. Kalbacher, F. Combarnous, F. De-vilaine, J. Mcgregor et al., Comparison of a Bayesian network with a logistic regression model to forecast IgA nephropathy, Biomed Res Int, p.686150, 2013.

P. J. Giabbanelli and J. G. Peters, An algebraic approach to combining classifiers, Procedia Comput Sci, vol.51, pp.1545-54, 2015.

G. Texier, L. Pellegrin, C. Vignal, J. B. Meynard, X. Deparis et al., Dealing with uncertainty when using a surveillance system, Int J Med Inform, vol.104, pp.65-73, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573752

E. Salas and G. Klein, Linking expertise and naturalistic decision making, 2001.

H. Chaudet, L. Pellegrin, and N. Bonnardel, Special issue on the 11th conference on naturalistic decision making, Cogn Tech Work, vol.17, issue.3, pp.315-323, 2015.