A. A. Sahasrabuddhe, V. K. Bajpai, and C. M. Gupta, A novel form of actin in Leishmania: molecular characterisation, subcellular localisation and association with subpellicular microtubules, Mol Biochem Parasitol, vol.134, p.14747148, 2004.

C. Janke and J. C. Bulinski, Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions, Nat Rev Mol Cell Biol, vol.12, p.22086369, 2011.

D. Wloga and J. Gaertig, Post-translational modifications of microtubules, J Cell Sci, vol.123, p.20930140, 2010.

K. J. Verhey and J. Gaertig, The tubulin code, Cell Cycle Georget Tex, vol.6, pp.2152-60, 2007.

C. Janke, K. Rogowski, and J. Van-dijk, Polyglutamylation: a fine-regulator of protein function? « Protein Modifications: beyond the usual suspects » review series, EMBO Rep, vol.9, p.18566597, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00351109

C. Bonnet, D. Boucher, S. Lazereg, B. Pedrotti, K. Islam et al., Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation, J Biol Chem, vol.276, p.11278895, 2001.

D. Boucher, J. C. Larcher, F. Gros, and P. Denoulet, Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin, Biochemistry (Mosc), vol.33, pp.12471-12478, 1994.

B. Lacroix, J. Van-dijk, N. D. Gold, J. Guizetti, G. Aldrian-herrada et al., Tubulin polyglutamylation stimulates spastin-mediated microtubule severing, J Cell Biol, vol.189, p.20530212, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509804

J. C. Larcher, D. Boucher, S. Lazereg, F. Gros, and P. Denoulet, Interaction of kinesin motor domains with alpha-and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation, J Biol Chem, vol.271, p.8703022, 1996.

C. Janke, K. Rogowski, D. Wloga, C. Regnard, A. V. Kajava et al., Tubulin polyglutamylase enzymes are members of the TTL domain protein family, Science, vol.308, p.15890843, 2005.

Y. Kimura, N. Kurabe, K. Ikegami, K. Tsutsumi, Y. Konishi et al., Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs), J Biol Chem, vol.285, p.20519502, 2010.

K. Rogowski, J. Van-dijk, M. M. Magiera, C. Bosc, J. Deloulme et al., A family of protein-deglutamylating enzymes associated with neurodegeneration, Cell, vol.143, p.21074048, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00538184

J. Van-dijk, K. Rogowski, J. Miro, B. Lacroix, B. Eddé et al., A targeted multienzyme mechanism for selective microtubule polyglutamylation, Mol Cell, vol.26, p.17499049, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00217041

J. Van-dijk, J. Miro, J. Strub, B. Lacroix, A. Van-dorsselaer et al., Polyglutamylation Is a Posttranslational Modification with a Broad Range of Substrates, PMID: 18045879 (De)glutamylation, cell death and autophagy PLOS Neglected Tropical Diseases, vol.283, pp.3915-3937, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00217037

K. Gull, The cytoskeleton of trypanosomatid parasites, Annu Rev Microbiol, vol.53, p.10547703, 1999.

D. R. Robinson, T. Sherwin, A. Ploubidou, E. H. Byard, and K. Gull, Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle, J Cell Biol, vol.128, p.7896879, 1995.

N. Portman and K. Gull, Proteomics and the Trypanosoma brucei cytoskeleton: advances and opportunities, Parasitology, vol.139, p.22475638, 2012.

M. Casanova, F. De-monbrison, J. Van-dijk, C. Janke, M. Pagès et al., Characterisation of polyglutamylases in trypanosomatids, Int J Parasitol, vol.45, p.25444861, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02049686

L. Basmaciyan, L. Berry, J. Gros, N. Azas, and M. Casanova, Temporal analysis of the autophagic and apoptotic phenotypes in Leishmania parasites, Microb Cell Graz Austria, vol.5, pp.404-421, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01888421

M. Das, S. B. Mukherjee, and C. Shaha, Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes, J Cell Sci, vol.114, p.11559754, 2001.

R. Das, A. Roy, N. Dutta, and H. K. Majumder, Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani, Apoptosis Int J Program Cell Death, vol.13, pp.867-82, 2008.

P. Holzmuller, D. Sereno, M. Cavaleyra, I. Mangot, S. Daulouede et al., Nitric oxide-mediated proteasome-dependent oligonucleosomal DNA fragmentation in Leishmania amazonensis amastigotes, Infect Immun, vol.70, p.12065515, 2002.

N. Lee, S. Bertholet, A. Debrabant, J. Muller, R. Duncan et al., Programmed cell death in the unicellular protozoan parasite Leishmania, Cell Death Differ, vol.9, p.11803374, 2002.

S. B. Mukherjee, M. Das, G. Sudhandiran, and C. Shaha, Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes, J Biol Chem, vol.277, p.11983701, 2002.

C. Paris, P. M. Loiseau, C. Bories, and J. Bré-ard, Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes, Antimicrob Agents Chemother, vol.48, p.14982775, 2004.

G. Kroemer, L. Galluzzi, P. Vandenabeele, J. Abrams, E. S. Alnemri et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol.16, p.18846107, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407686

S. Gannavaram and A. Debrabant, Programmed cell death in Leishmania: biochemical evidence and role in parasite infectivity, Front Cell Infect Microbiol, vol.2, p.22919685, 2012.

C. Shaha, Apoptosis in Leishmania species & its relevance to disease pathogenesis, Indian J Med Res, vol.123, p.16778307, 2006.

W. R. Proto, G. H. Coombs, and J. C. Mottram, Cell death in parasitic protozoa: regulated or incidental?, Nat Rev Microbiol, vol.11, p.23202528, 2013.

C. M. Genes, H. De-lucio, P. A. Sánchez-murcia, F. Gago, J. Nez-ruiz et al., Pro-death activity of a BH3 domain in an aquaporin from the protozoan parasite Leishmania, Cell Death Dis, vol.7, p.27468694, 2016.

P. Dubessay, C. Blaineau, P. Bastien, L. Tasse, J. Van-dijk et al., Cell cycle-dependent expression regulation by the proteasome pathway and characterization of the nuclear targeting signal of a Leishmania major Kin-13 kinesin, Mol Microbiol, vol.59, p.16430691, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00175476

T. Koide, M. Nose, Y. Ogihara, Y. Yabu, and N. Ohta, Leishmanicidal effect of curcumin in vitro, Biol Pharm Bull, vol.25, p.11824543, 2002.

A. Rastrojo, F. Carrasco-ramiro, D. Martín, A. Crespillo, R. M. Reguera et al., The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq, BMC Genomics, vol.14, p.23557257, 2013.

A. Wolff, B. De-né-chaud, D. Chillet, H. Mazarguil, E. Desbruyères et al., Distribution of glutamylated alpha and beta-tubulin in mouse tissues using a specific monoclonal antibody, GT335, PMID: 1493808 (De)glutamylation, cell death and autophagy, vol.59, pp.425-457, 1992.

K. Rogowski, F. Juge, J. Van-dijk, D. Wloga, J. Strub et al., Evolutionary Divergence of Enzymatic Mechanisms for Posttranslational Polyglycylation, Cell, vol.137, p.19524510, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00400172

A. Ambit, K. L. Woods, B. Cull, G. H. Coombs, and J. C. Mottram, Morphological Events during the Cell Cycle of Leishmania major, Eukaryot Cell, vol.10, p.21926331, 2011.

G. Mariño, M. Niso-santano, E. H. Baehrecke, and G. Kroemer, Self-consumption: the interplay of autophagy and apoptosis, Nat Rev Mol Cell Biol, vol.15, p.24401948, 2014.

P. Kapoor, A. A. Sahasrabuddhe, A. Kumar, K. Mitra, M. I. Siddiqi et al., An Unconventional Form of Actin in Protozoan Hemoflagellate, Leishmania, J Biol Chem, vol.283, p.18539603, 2008.

R. C. Nayak, A. A. Sahasrabuddhe, V. K. Bajpai, and C. M. Gupta, A novel homologue of coronin colocalizes with actin in filament-like structures in Leishmania, Mol Biochem Parasitol, vol.143, p.16024104, 2005.

J. A. García-salcedo, D. Pérez-morga, P. Gijón, V. Dilbeck, E. Pays et al., A differential role for actin during the life cycle of Trypanosoma brucei, EMBO J, vol.23, p.14963487, 2004.

M. M. Magiera, P. Singh, S. Gadadhar, and C. Janke, Tubulin Posttranslational Modifications and Emerging Links to Human Disease, Cell, vol.173, p.29856952, 2018.

R. O'hagan, B. P. Piasecki, M. Silva, P. Phirke, K. Nguyen et al., The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans, Curr Biol CB, vol.21, p.21982591, 2011.

N. Pathak, C. A. Austin-tse, Y. Liu, A. Vasilyev, and I. A. Drummond, Cytoplasmic carboxypeptidase 5 regulates tubulin glutamylation and zebrafish cilia formation and function, Mol Biol Cell, vol.25, p.24743595, 2014.

H. C. Lam, S. M. Cloonan, A. R. Bhashyam, J. A. Haspel, A. Singh et al., Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction, J Clin Invest, vol.123, p.24200693, 2013.

I. Orhon, N. Dupont, O. Pampliega, A. M. Cuervo, and P. Codogno, Autophagy and regulation of cilia function and assembly, Cell Death Differ, vol.22, pp.389-97, 2015.