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 IDPs help algae to cope with extreme conditions 

 IDPs from algae are under-represented in disordered protein databases

 Only IDPs involved in CO2 metabolism have been studied so far (EPYC1, CP12, 

RCA…)

 Disorder is involved in the regulation of enzymes belonging to CO2 metabolism

 Disorder is also important in algal chaperones
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Abstract 

Intrinsically disordered proteins (IDPs) represent a family of proteins that provide many 

functional advantages in a large number of metabolic and signaling pathways. Because of 

their high flexibility that endows them with pressure-, heat- and acid-resistance, IDPs are 

valuable metabolic regulators that help algae to cope with extreme conditions of pH, 

temperature, pressure and light. They have, however, been overlooked in these organisms. In 

this review, we present some well-known algal IDPs, including the conditionally disordered 

CP12, a protein involved in the regulation of CO2 assimilation, as probably the best known 

example, whose disorder content is strongly dependent on the redox conditions, and the 

essential pyrenoid component 1 that serves as a scaffold for ribulose-1, 5-bisphosphate 

carboxylase/oxygenase. We also describe how some enzymes are regulated by protein 

fragments, called intrinsically disordered regions (IDRs), such as ribulose-1, 5-bisphosphate 

carboxylase/oxygenase activase, the A2B2 form of glyceraldehyde-3-phosphate 

dehydrogenase and the adenylate kinase. Several molecular chaperones, which are crucial for 

cell proteostasis, also display significant disorder propensities such as the algal heat shock 

proteins HSP33, HSP70 and HSP90. This review confirms the wide distribution of IDPs in 

algae but highlights that further studies are needed to uncover their full role in orchestrating 

algal metabolism. 

Keywords : Calvin cycle, chaperone, CP12, EPYC, Intrinsically disordered protein, RuBisCO 

Abbreviations

ADK: adenylate kinase; CBB: Calvin-Benson-Bassham; CCM: CO2 concentrating 

mechanism; CD: circular dichroism; CP12: chloroplast protein of 12 kDa; EPYC1: Essential 
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Pyrenoid component 1; EST: expressed sequence tag; GAPDH: glyceraldehyde-3-phosphate 

dehydrogenase; HCA: hydrophobic cluster analysis; HSP: heat shock protein; IDP: 

intrinsically disordered protein; IDR: intrinsically disordered region; LSU: large subunit; 

NMR: nuclear magnetic resonance; PGA: phosphoglyceric acid; PRK: phosphoribulokinase; 

ROS: reactive oxygen species; PTM: post translational modification; RuBisCO: Ribulose-1, 

5-bisphosphate carboxylase/oxygenase; RuBP: Ribulose-1, 5-bisphosphate; RCA: RuBisCO 

activase; SAXS: small angle X-ray scattering; SSU: small subunit
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1. Introduction

Regulation of Algal Metabolism 

Algae comprise a hugely diverse, polyphyletic group of photosynthetic organisms including 

prokaryotic cyanobacteria and eukaryotic algae from the Archaeplastida, Chromalveolata, 

Cryptophyta, Haptophyta and Dinoflagellata [1]. At least 72,500 algal species are known [2] 

but this is probably a large underestimate. Algae contribute about 46% of global primary 

production, mainly in the ocean [3] and also play an important role in global biogeochemical 

cycles such as oceanic carbon sequestration [4]. Algae are ubiquitous in aquatic and moist 

environments and some of them are ‘extremophiles’ tolerating, inter alia, desiccation [5], 

high or low temperatures, high or low pH, high salinity, high pressure [6] and high 

concentrations of heavy metals [7, 8]. Some survival strategies involve the production of 

novel biochemical compounds and there is a recent impetus towards the valorization of algae 

metabolic products, such as polyunsaturated fatty acids, fatty acid esters, polysaccharides, and 

the production of enzymes for various applications [9].

In eukaryotic algae, as in plants, chloroplasts have a central role in metabolism. They 

all derive from a cyanobacterium, but the number of membranes around a chloroplast varies 

depending on the number of endosymbioses involved in their evolutionary history [10]. Most 

of the chloroplastic enzymes involved in the metabolic primary steps are nuclear-encoded [11, 

12] and their activity can be regulated at the transcription, translation, or protein level. 

Notably, at the protein level, post-translational modifications, protein-ligand or protein-

protein interactions can regulate enzyme activity [13, 14].

Algae comprise a large number of algal species with high biochemical and structural 

diversity, are ecologically important, and can survive and grow in a large range of different 
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environments. To understand the basic principles of how algae regulate their metabolism, and 

eventually support future biotechnological applications, we need to decipher the mechanisms 

of these processes at the molecular level. Among regulatory proteins, a peculiar class of 

proteins has emerged, the intrinsically disordered/ductile proteins (IDPs), or the proteins that 

contain intrinsically disordered regions (IDRs). In this review, we will discuss their role in the 

regulation of algal metabolisms. 

Reassessment of the protein structure function paradigm

IDPs escape from the classic structure-function paradigm and are fully functional despite 

being fully or partially disordered. The principal feature of these IDPs or IDRs containing 

proteins is the absence of a unique stable conformation which results in a high structural 

flexibility [15, 16]. Nevertheless, IDPs can also present either small structural motifs, or have 

a significant propensity to fold into secondary structural elements [17, 18]. This propensity to 

fold is modulated by several factors such as post-translational modifications [19], protein or 

ligand binding [20-22], physico-chemical conditions such as redox-conditions [23-27], pH 

[28], temperature [29], binding to a membrane, adsorption at an interface [30], etc. Some 

IDPs are also named conditionally disordered proteins [31] when their disorder content and 

their function is directly modulated by different possible conditions, as redox-conditions. A 

large collection of names were found in the literature that describes these proteins, and the 

community eventually decided to keep the term IDP [32]. The term will be used in the rest of 

this review. 

The signatures of IDPs are rather well-established, with a bias in their amino-acid 

composition and frequent sequences of low complexity [33, 34]. Based on the sequence 

peculiarities of IDPs, a plethora of disorder predictors has been developed during the last two 

decades, with increasing prediction accuracy, and are continually updated [35-37]. These 
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predictors have allowed large scale analyses of an ever growing number of fully sequenced 

and annotated genomes in all kingdoms of Life, which revealed the widespread and universal 

nature of IDPs. Several databases of IDPs have thus been implemented, which provide pre-

computed disorder predictions of completely-sequenced genomes (D2P2; http://d2p2.pro/), of 

all UniProt entries (MobiDB; http://mobidb.bio.unipd.it/), or which reference only 

experimentally verified IDPs (DisProt, http://www.disprot.org/; IDEAL, 

http://idp1.force.cs.is.nagoya-u.ac.jp/IDEAL/).

A range of biophysical approaches are required to characterise experimentally the 

disordered properties of IDPs, often advantageously in association with state-of-the-art 

modelling tools to comprehend the large ensemble of probable conformational states that 

coexist in a given condition [16, 38-41]. IDPs have thus been characterised by small angle X-

ray scattering (SAXS), nuclear magnetic resonance (NMR) spectroscopy, circular dichroism 

(CD) spectroscopy, protease sensitivity and many other techniques, to cite but a few (see 

Longhi, this issue, [16, 41-43], with each method having advantages and limitations. 

The functions carried out by IDPs are diverse and complement those of ordered 

proteins. They play significant roles in many biological processes, such as control of the cell 

cycle, transcriptional activation, and signalling, and they frequently interact with or function 

as central hubs in protein interaction networks [44-48]. Moreover, correlation between 

disorder and post-translational modifications (PTMs) such as phosphorylation, methylation, 

acylation, glycosylation and ubiquitination has been reported [19, 49]. This is worth noting 

since PTMs can contribute to the diversification and functionality of proteomes by regulating 

different properties of proteins (stability, conformation, etc…). Hence IDPs via diverse PTMs 

participate in the regulation processes of the cell [19, 46, 50, 51].

IDP phylogenic distribution
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Analysis of the proteomes using predictors of disorder revealed that the proportion of intrinsic 

disorder in proteomes is variable in the evolution tree. There is a low proportion of disorder in 

bacteria and archaea, a higher one in viruses, and a much larger one in eukaryotes, especially 

in higher vertebrates, including mammals [52-54]. Recently, it was shown that IDPs play a 

role in the evolution of multi-cellularity and cell type specification [48, 55]. 

By contrast, the distribution of IDPs among the different kingdoms of Life, that have 

been experimentally investigated, does not correlate with the distribution of predicted IDPs. 

Notably, in the experimentally-verified database DisProt [56], IDPs from photosynthetic 

organisms, and especially from algae, are under-represented while IDPs from bacteria are 

over-represented, with 19% of all IDPs. In the other databases, this number ranges from 0 to 

8.1% [56]. This discrepancy in the IDP databases might reflect, in a predominant manner, a 

biased interest in scientific research for pathogenic organisms that overlooks the wide 

distribution of disorder in the tree of Life. Another bias might also result from the fact that 

large scale projects on structural genomics have used E. coli as the main expression system 

for high throughput production and screening of proteins, which naturally limits the efficient 

and correct production of some eukaryotic proteins.

IDP in plants and algae

A specific feature of IDPs is that they are able to maintain their functional states in a wide 

range of physiological conditions, unlike well-folded proteins which can be extremely 

sensitive to variation in their environment. Indeed, IDPs do not aggregate under high 

temperature or low pH, conditions in which structured proteins usually undergo denaturation 

and loss-of-function [29, 57, 58]. As mentioned above, algae encounter extreme conditions. 

Indeed, some algae can sink down to 4000 m in the deep sea and survive despite the high 

hydrostatic pressure [6]. Similarly to plant cells, algae can maintain their cellular volume by 

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413



8

imposing a turgor pressure inside their cell wall [5, 59]. Variation of pressure can be also 

detrimental for the conservation of functional cavities in folded enzymes and of 

macromolecular scaffolds [60]. For instance, it has been shown that the activity of Calvin-

Benson-Bassham (CBB) cycle enzymes is strongly affected by high pressure [61]. IDPs, 

which are devoid of internal cavities, are expected to be more stable upon pressure increase, 

and indeed, -synuclein [62] and the disordered region of titin [63] preserve their disordered 

characteristics at high pressure. It is likely that IDPs in general are more stable in these 

conditions but this needs further investigations.

Besides, the chloroplast proteome undergoes variations of physico-chemical conditions 

with redox switches [64]. The dark-light regulation of the photosynthetic pathway in the 

chloroplast is mainly modulated via redox transitions [65-67]. Thanks to their propensity to 

receive post-translation modifications that modify their conformational and functional states, 

IDPs are particularly suited to sense these changes of physico-chemical conditions, thereby 

regulating enzymes activity [68, 69]. For all these reasons, the properties of IDPs are valuable 

assets for the regulation of enzymes and metabolic pathways, in the broad range of 

environmental conditions that algae withstand. 

Up to now, only few IDPs from photosynthetic organisms have been investigated, and 

they mainly come from the higher plant Arabidopsis thaliana, which has one of the most 

accurately annotated sequenced genome thanks to its small size. A recent analysis of 12 plant 

genomes revealed that the occurrence of disorder in plants is similar to that in many other 

eukaryotes [70, 71] though only few plant IDPs have been experimentally characterised (A. 

Covarrubias, this issue). These IDPs or IDR containing proteins are, in the vast majority, 

nuclear-encoded proteins, while chloroplast- and mitochondria-encoded proteins have a lower 

disorder trend as in Archae and Bacteria, which is in agreement with their phylogenetic 

origin. 
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In the model alga Chlamydomonas reinhardtii, a systematic search for disordered 

protein experimentally showed that this alga contains a large number of non-characterised 

proteins that have IDP-like properties [72]. Interestingly, the few IDPs that have been 

biophysically investigated so far are the ones involved in the regulation of their metabolic 

pathways. This bias arises from the keen interest in the metabolism of algae, which have a 

high potential in CO2 assimilation and production of various added-value molecules.

In this review we shine a spotlight on the few known IDPs from algae that help these 

photosynthetic organisms to adjust their photosynthetic carbon metabolism to the prevailing 

conditions in their habitat. These IDPs are found in the chloroplast, where the primary step of 

photosynthesis occurs, and where CO2 is assimilated and converted into building blocks to 

produce fatty acids, carbohydrates, proteins and various metabolites. Chaperones, which 

regulate the proteostasis, and therefore metabolism, through disordered regions, will also be 

discussed. Finally, we will extend the discussion to other algal predicted IDPs involved in 

metabolic regulation.
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2. CO2 acquisition and assimilation

During photosynthetic CO2 assimilation, chemical energy, conveyed mainly by ATP and 

NAD(P)H, and supplied by electron transfer reactions through the photosystems I and II, is 

used by metabolic reactions of the CBB cycle. The efficiency of this assimilation relies on a 

fine tuning between energy demand and supply. Hence the CBB is highly regulated. This 

cycle functions in the light and is inactive in the dark. Some enzymes are active only under 

reducing conditions, corresponding to the light conditions, and are inactive under oxidising 

conditions corresponding to the dark [13, 65].

RuBisCO activase (RCA)

Ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) is the enzyme that initiates the 

CBB cycle by converting ribulose-1, 5-bisphosphate (RuBP) and carbon dioxide (CO2) into 

two molecules of phosphoglyceric acid (PGA). In addition, RuBisCO catalyses a competitive 

reaction that converts RuBP in the presence of O2, into one PGA and one toxic compound, 

phosphoglycolate [73]. RuBisCO is made up of eight large (LSU, RbcL) and eight small 

(SSU, RbcS) subunits, in algae and higher plants [74]. In order for RuBisCO to be active, it 

has long been suggested that a specific lysine residue on the LSU needs to be carbamylated 

[75]. Today, it is known that the mechanism for regulating RuBisCO is much more complex 

and involves not only changes in the carbamylation state of this lysine residue, but also 

conformational changes in the protein. These conformational changes are triggered by a 

protein called RuBisCO activase (RCA), which is a specific molecular chaperone and an 

AAA+ ATPase [66]. RuBisCO active sites can be locked by sugar phosphate in the close 

inactive state and RCA prevents this inhibition by promoting ATP-dependent conformational 

changes that open closed sites, thus facilitating dissociation of inhibitory sugar phosphate 
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(Figure 1). Furthermore, the presence of RCA allows RuBisCO to be active even at sub-

optimal CO2 concentrations that would not normally permit carbamylation in vivo [76, 77]. 

Some algae in the charophyta phylum have multiple isoforms of RCA: two  -isoform 

of ~45-48 and 58 kDa, and a -isoform of ~41-43 kDa [78] (Figure 2B). These isoforms are 

the product of alternative splicing and differ from each other by a larger and redox-regulated 

C-terminal extension on the  -isoforms. This C-terminal extension contains three or two 

regulatory cysteine residues that allow the protein to be activated by light through the action 

of a small redox protein, the thioredoxin f [78, 79]. Interestingly, RCAs from another phylum 

of microalgae, the chlorophyta (including C. reinhardtii), lack these two cysteine residues and 

therefore are unlikely to be redox-sensitive. 

An in silico analysis [80] showed that the C-terminal extension of RCA isoforms is 

intrinsically disordered (Figures 1B and 2A). Several small but significant differences were 

observed between the intrinsic disorder propensities in RCAs from two chlorophyta algae, 

Tetraselmis sp. and Ostreococcus tauri, probably reflecting a different mode of interaction 

between their RCAs and RuBisCO [81]. The authors suggest that the difference in the 

disordered propensities can be ascribed to different evolution pressures on these two algae 

related to their motility. Indeed, Tetraselmis sp. is motile and can actively migrate to optimal 

habitat, in contrast to O. tauri, which is a non-motile microalga. For the latter, therefore, there 

is a higher evolution pressure on RCA to optimise photosynthesis under non-optimal 

conditions. However, one cannot exclude that other processes are involved. In other 

photosynthetic organisms such as in  cyanobacteria, the RCA lacks the N terminal domain 

necessary for RuBisCO activation found in plants and green algae [66, 78, 82]. In red lineage 

organisms, there is no RCA gene but it is substituted by another protein, called CbbX. In the 

purple bacterium Rhodobacter sphaeroides, CbbX possesses a short disordered C-terminal 
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extension (Figures 1C and 2A), the function of this part though, remains unelucidated [83]. 

The homologues of CbbX from Rhodophyta lack this C-terminal extension (Figure 2C).

Essential Pyrenoid component 1 (EPYC1)

In many algae, RuBisCO is present within a chloroplastic membraneless compartment that 

concentrates locally proteins involved in carbon fixation, and called a pyrenoid. Pyrenoids are 

involved in CO2 concentrating mechanisms (CCMs) that are essential for aquatic organisms, 

which face low CO2 concentrations much below the optimal concentration for RuBisCO 

activity [84, 85]. These CCMs increase CO2 concentration around RuBisCO and thereby 

decrease O2 competition. The pyrenoid is located in the chloroplast, and is surrounded by a 

starch sheath and traversed by membrane tubules that are continuous with the thylakoid 

membranes [86]. Recently, it was shown that in the model alga C. reinhardtii, RuBisCO 

accumulation and localization within the pyrenoid is mediated by a disordered repeat nuclear-

encoded protein, called Essential Pyrenoid component 1 (EPYC1), previously identified as a 

low-CO2 inducible protein (LCI5; Cre10.g436550) [87]. This protein is ubiquitous in 

pyrenoid-containing algae but is absent in pyrenoid-less algae. In addition to EPYC1, 

RuBisCO and its chaperone RCA, 135 to 190 putative CCMs proteins including some of their 

binding partner(s) were also found to be located in the membrane-less pyrenoid, by mass 

spectrometry analysis [88, 89]. Like many IDPs, EPYC1 is phosphorylated at low CO2 

concentration [90]. Furthermore EPYC1 was shown to interact with a predicted 

serine/threonine protein kinase (KIN4-2; Cre03.g202000) and two 14-3-3 kinases FTT1 and 

FTT2 [87]. These interactions with kinases probably regulate RuBisCO and EPYC1 

interactions and activities. 

EPYC1 protein displays characteristic features of IDPs. Its CD profile is typical of an 

IDP (Figure 3A), and it is resistant to denaturing conditions such as boiling for 15 min [91]. 

Its sequence contains four 60 amino-acids repeats, each domain being predicted to be 
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disordered (Figure 3C). The role for these tandem domain repetitions remains controversial. It 

was hypothesised that these low-complexity repeats allow EPYC1 to bind several RuBisCO 

(Figure 3B), which then drives formation of pyrenoid droplets with liquid-like properties [88]. 

However, it was later shown that a mutant of EPYC1 with a single repeat was still able to 

form membrane-less liquid-liquid phase separation droplets upon binding to RuBisCO in-

vitro, suggesting that each repeat domain contains several binding sites to RuBisCO. In-vitro 

reconstitution of liquid-liquid phase separation droplets indicated that EPYC1 and active 

RuBisCO are necessary and sufficient for phase separation, and that the phase separation is 

governed by electrostatic interactions [91]. In line with this finding, it is known that proteins 

with IDRs and low complexity sequences tend to phase separate and to form membrane-less 

organelles [92]. The molecular nature of such membrane-less organelles is under intense 

scrutiny [93]. In the current model, the pyrenoid matrix is highly dynamic, in a liquid-phase 

that supports efficient molecular diffusion to increase CO2 concentration and decrease the 

oxygenase activity of RuBisCO. 

CP12 and the regulation of the CBB cycle

CP12 is a nuclear-encoded chloroplast protein of about 8.5 kDa that is present in many 

photosynthetic organisms, including cyanobacteria, algae, and plants [94, 95] as well as in 

cyanophages [96]. It has been especially well characterised in some model organisms such as 

the higher plant A. thaliana, the cyanobacterium Synechococcus elongatus and the green alga 

C. reinhardtii [97]. This small protein is a conditionally disordered protein that has been 

characterised by NMR, SAXS, CD, FÖrster resonance energy transfer, fluorescence 

correlation spectroscopy, mass spectrometry and molecular modelling [26, 27, 98-101]. CP12 

is involved in the regulation of the CBB cycle but has multiple other faces, such as being a 

chaperone. CP12 from C. reinhardtii has two disulfide bridges, one at the N-terminus and one 

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767



14

at the C-terminus. While the C-terminal cysteine residues are conserved in all CP12 proteins, 

the N-terminal ones may be missing in some photosynthetic organisms, e.g. in rhodophytes, 

the glaucophyte Cyanophora and in Synechococcus [94, 102, 103]. The formation of the two 

disulfide bonds under dark or oxidizing conditions allows the algal CP12 to bind two enzymes 

from the CBB cycle, namely glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 

phosphoribulokinase (PRK). The formation of this supramolecular ternary edifice results in 

the inactivation of these two enzymes and consequently leads to the arrest of the CBB cycle in 

the dark. In the light, CP12 is reduced and the breakage of its two disulfide bridges leads to 

the dissociation of the ternary complex, with the resulting dissociated forms of PRK and 

GAPDH being fully active. CP12 therefore participates in the regulation and in the “work on 

demand” of the CBB cycle that is active under light and inactive under dark. 

While in the oxidised state, CP12 has some -helices, in the reduced state it becomes 

fully disordered (Figure 4A and 4B) [27, 99, 104, 105]. However, in both reduced and 

oxidised states, CP12 is highly mobile. NMR, CD and SAXS showed that the algal oxidised 

CP12 is composed of three regions with distinct conformational sampling [27]: its C-terminus 

folds in a stable turn, ready for GAPDH binding, it is linked to the N-terminal domain through 

a randomly disordered linker, while the N-terminus oscillates on the millisecond timescale 

between helical and random states (Figure 4C). The existence of a conformational equilibrium 

between two states of the algal CP12 was also shown previously by ion mobility mass 

spectrometry [98]. The combined analysis of NMR and SAXS data enabled the quantification 

of the relative population of each state (40% random-coil sate and 60% helical). Upon binding 

to GAPDH, this equilibrium shifts towards more extended conformations (Figure 4D). In 

other words CP12 undergoes an induced unfolding. This phenomenon, called cryptic disorder, 

which contributes to decreasing the entropy cost of binding, might explain the very high 

affinity of CP12 for its partners, with a dissociation constant in the nM range [106]. This 
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GAPDH/CP12 sub-complex in turn enables the binding of PRK [107]. The idea that two 

proteins could form a high-affinity complex while remaining highly dynamic has long been 

“nearly heretical”. However, a recent study has brought to light the case of two fully 

disordered proteins forming a dynamic complex of very high affinity (pM range), without any 

gain of structure in the two proteins [108]. This last example shows that disordered proteins 

might interact strongly without anchor sites, nor disorder-to-order transitions, opening a new 

concept and avenue in the field of IDPs.

CP12 can bind metal ions, such as Cu2+, Ni2+ [109] and Ca2+ [110], as well as enzymes 

such as the FBP aldolase [111]. Of interest also, CP12 can play the role of a specific 

chaperone for GAPDH preventing its aggregation and inactivation by heat treatment [112]. 

Hence, CP12 is a versatile protein considered as a jack-of-all-trades but master of the CBB 

cycle [113], that indirectly regulates the CO2 assimilation by interacting with PRK and 

GAPDH. This regulation by CP12 is conserved in different species, but the molecular 

mechanism of the interactions and the strength of binding between the PRK/GAPDH/CP12 

complex differ among species. For example, in A. thaliana the dissociation constant for 

GAPDH/CP12 is in the µM range [114], and CP12 undergoes an induced folding upon 

binding to GAPDH, in contrast to C. reinhardtii [27]. The broad adaptation to multiple 

environmental conditions might explain these divergent molecular mechanisms.

GAPDH-B and ADK3, two enzymes with C-terminal extensions homologous to CP12

There are two main forms of chloroplast GAPDH. The first one, GapA, is present in the 

majority of photosynthetic organisms [102, 115] and forms A4 homotetramers. The second 

isoform, GapB, is found in higher plants and in the alga Ostreococcus. It is extremely similar 

to GapA, but has a C-terminal extension (about 30 amino acids) homologous to CP12 [116, 

117]. The GapB subunit forms functional A2B2 heterotetramers with the GapA subunit, as 
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well as inactive A8B8 oligomers, although the relevance and the role of these complexes 

remain disputed. However, it is well established that the disordered "tail" or the C-terminal 

extension on GapB endows GAPDH with autonomous redox regulation [115]. 

In C. reinhardtii, where only GapA exists, this autonomous regulation is 

impossible. However, as the first steps of glycolysis and the oxidative pathway of phosphate 

pentoses take place in the chloroplast [118], there is an obligatory need for a fine regulation of 

the activity of this A4 isoform. It has been shown that the redox regulation of this chloroplast 

A4 GAPDH, depends on its interaction with CP12. Therefore, the regulation of GAPDH 

relies, as for RuBisCO, on IDRs either on the enzyme itself or on its partner, CP12. Since 

GAPDH is a moonlighting protein, with many cellular functions [119], fusion with this CP12-

like tail may endows it with further other regulatory functions yet unknown and to be 

explored.

Other important enzymes are the adenylate kinases (ADKs). These enzymes 

maintain the energetic balance in cellular compartments including chloroplasts and 

mitochondria, by catalyzing the interconversion of AMP, ATP, and ADP (AMP+ATP↔ 

2ADP). In C. reinhardtii, ten genes encoding ADKs are present. Within the chloroplast 

stroma of photosynthetic organisms, where the ATP:ADP ratio has to be kept at an optimal 

level to allow a sustainable rate of CO2 fixation, ADK3 plays a major role in the regulation of 

concentrations of adenylates [120].

ADK3 from C. reinhardtii comprises two domains: a canonical domain, homologous 

to the Escherichia coli ADK (44% identity), and a "tail" of 25 residues, very close to the C-

terminal portion of CP12 (68% identity) [121]. The kinetic parameters for the wild-type and 

truncated ADK3 (removing the C terminus, namely ADK3-∆CP12) are very similar, 

indicating that the C-terminal extension of ADK3 does not affect the activity and kinetic 

properties of the enzyme, nor its global secondary structure. Since CP12-like extension 
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confers GAPDH redox regulation, it was hypothesised that it might be the same with ADK3. 

This redox regulation was not observed, but the CP12-like extension confers ADK3 with a 

high affinity for the chloroplast GAPDH [122]. Via this disordered region, ADK3 down-

regulates the NADPH-dependent GAPDH activity, therefore stopping the consumption of 

NADPH by the CBB cycle. The C-terminal extension on ADK is also found in the sequence 

of ADK from other algae and might play the same role.

In addition, the C terminus of ADK3 has a strong effect on the thermal stability of the 

enzyme, and this effect is probably the result of its predicted disorder propensity, in 

agreement with IDPs heat-resistance [29, 57]. 

Protection against oxidative damage

The metabolism of microalgae is tightly redox regulated. On the other hand, the transient 

accumulation of reactive oxygen species (ROS) causes subsequent oxidative damage, protein 

unfolding and aggregation. Chloroplasts are organelles where molecular oxygen is produced 

during photosynthesis and where ROS production occurs, therefore protein-thiols protective 

mechanisms are active in these organelles. Under conditions causing oxidative stress, 

glutathionylation and nitrosylation play roles in enzyme regulation and signalling [123]. A 

proteomic study on C. reinhardtii has identified 225 proteins that are potential targets of 

glutathionylation, including 10 out of 11 enzymes of the CBB cycle [124], suggesting a 

central role of such modification in the global regulation of the carbon assimilation pathway. 

The role of CP12 in oxygen photoautotrophs beyond light/dark regulation, includes protection 

of PRK and GAPDH from oxidative stress [125] and a role in the glutathionylation of ADK3 

that remains to be defined. Indeed, while ADK3 can be glutathionylated, the truncated ADK3-

ΔCP12 cannot, even though the site of glutathionylation is not on the cysteine residues present 

in the C-terminal extension on ADK3 [121]. 
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3. Molecular chaperones 

Protein homeostasis, or proteostasis, is controlled by the so-called chaperones, in response to 

stress, and in normal conditions [126]. These proteins are thus essential for the “orchestration” 

of metabolism. Several molecular chaperones have now been identified and classified as 

conditionally disordered proteins [127]. The functions and underlying mechanisms of 

molecular chaperones are very well studied in bacteria and in the cytosol or endoplasmic 

reticulum of eukaryotic cells, but their role in the metabolic processes of the chloroplast have 

been overlooked. 

An experimental search for IDPs in C. reinhardtii showed that chaperones and 

ribosomal proteins were the most represented IDPs [72]. Twenty proteins related to 

chaperone-function were identified, such as the heat-shock proteins HSP33, HSP40, HSP70s, 

FKBP, HSP90 co-chaperone, …. The disordered propensities of HSP70, HSP90 and HSP90 

co-chaperone (Figure 5) have been shown experimentally in other organisms than algae [128], 

except for HSP33 that was characterised in C. reinhardtii [69]. 

HSP33 has been well studied in E. coli and is a redox chaperone that has a flexible C 

terminus that contains a conserved cysteine-rich center, Cys-X-Cys-Xn-Cys-X-X-Cys [23, 

25]. These cysteine residues bind Zn2+ under reducing conditions, thus maintaining the 

protein in its inactive form. In the oxidised form, the C-terminus unfolds after Zn2+ release 

and the protein becomes active. To be active, this bacterial chaperone therefore needs to 

become disordered and this internal order-to-disorder transition is required to control substrate 

binding and release [129]. Interestingly, HSP33 is present in only two clades of eukaryotes: 

(i) Kinetoplastids and parasitic oomycetes and (ii) photosynthetic organisms, but only in algae 

and mosses, not in higher land plants [69]. In C. reinhardtii, and in general in the green algal 

lineage, the first cysteine residue of the conserved cysteine-rich center has been lost and 
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replaced by a glycine residue. As a result, the C-terminus of HSP33 has lost its ability to bind 

Zn in reducing conditions and is disordered in both oxidised and reduced forms, unlike the 

bacterial protein. Only few structural changes of HSP33 from C. reinhardtii have been 

observed experimentally between the oxidised and the reduced forms, as predicted (Figure 

5A), and this was linked to a lower affinity for Zn2+ [69]. In C. reinhardtii, HSP33 expression 

increases in response to light-induced oxidative stress and appears to participate in the rapid 

response to exposure of the algal cells to oxidizing conditions. This protein is therefore 

essential to algal proteostasis and metabolism. 

In the cytosol of eukaryotic cells, the function of a plethora of proteins involved in 

signal transduction, like hormone receptors and kinases, depends on their folding by the 

HSP90 and HSP70 machineries [130, 131]. The HSP70s family comprises one subset of the 

best-studied chaperones in C. reinhardtii. These proteins play a role in all major subcellular 

compartments of the cell, and the HSP70B, HSP70C and HSP70A are targeted to the 

chloroplast, mitochondrion and cytosol, respectively [132]. The chloroplast HSP70B is 

induced either by light, or by heat or cold stress [132, 133]. Interestingly, the algal HSP70B 

that is highly homologous to other HSP70B from different species (see Table 1 in [132]) 

exhibits long disorder regions of more than 30 amino acid residues, and in particular a 71-

amino acid disordered region at its C terminus (Figure 5B). Its flexibility allows binding and 

release of clients, in good agreement with its function. In C. reinhardtii, HSP70B and 

HSP90C can form a multimeric complex [134], although this complex has never been 

successfully reconstituted in vitro from the two recombinant proteins [135]. The algal 

HSP90C also bears a disordered C-terminus of about 50 aminoacid residues (Figure 5C). Both 

HSP70B and HSP90C were found in the Chlamydomonas phosphoproteome [136] indicating 

that they are phosphorylated as many IDPs. Despite their importance in the cell, these heat-
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shock proteins, HSP70B, HSP90C and HSP33 remain understudied in C. reinhardtii and 

other algae compared to other organisms [137, 138]. 

Algal IDPs in other cellular processes

The experimental search for putative IDPs in C. reinhardtii also revealed few enzymes 

with long intrinsically disordered segments, involved in the algal metabolism (Figure 6) that 

are nuclear-encoded and targeted to either the mitochondrion or the chloroplast [72]. These 

IDR-containing enzymes have not been studied so far to our knowledge. Yet, one can 

hypothesise that the IDRs of these enzymes may also play important roles in the metabolism. 

To cite but a few, the magnesium chelatase complex, involved in the light capture in the 

chloroplast, contain an IDR. This enzyme synthesises a precursor of chlorophyll. Downstream 

of the CBB, the synthetic pathway of the storage compound starch also involves an IDR-

containing protein, the soluble starch synthase III (Figure 6B). Besides, four enzymes with 

long IDRs targeted to the mitochondrion were identified by Zhang et al.: the peptide 

methionine sulfoxide reductase, the dihydrolipoamide succinyltransferase oxoglutarate 

dehydrogenase E2 component (DLST-2OGDH) (Figure 6B), the F1F0 ATP-synthetase -

subunit and the carbonic anhydrase CA-8, all involved in the respiration process.

5. Conclusions

The autonomous chloroplastic and mitochondrial genomes encode only a small subset of 

proteins and the majority of the proteins present in these organelles are nuclear-encoded and 

imported after their synthesis in the cytosol. This import process allows the optimization of 

metabolic pathways by IDPs, although the chloroplast and the mitochondrion originate from 

bacteria, which have a lower content in IDPs. Furthermore, IDPs, with their ductile properties, 

are very robust and well-suited to cope with the drastic environmental changes encountered 
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by algae (extreme changes in temperature, pressure, pH, light etc.) and tune the metabolic 

pathways according to these changes. The data obtained from the experimental study on C. 

reinhardtii, although not exhaustive [72], and the predictions from algal genomes [71] 

demonstrate the wide distribution of protein disorder in algae. Remarkably a study comparing 

the distribution of disorder in different cell types, from mammals (including Homo sapiens), 

plants, algae, and bacteria showed that the proteome of C. reinhardtii contains the highest 

number of residues with a disorder score [55]. 

Whereas very few studies have been undertaken hitherto, the growing interest in microalgae 

and their metabolic properties will undoubtedly trigger original studies on the role of IDPs in 

the regulation of cellular and metabolic processes in these microorganisms.
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Figure captions

Figure 1: Mechanism of action of RCA. A: Model of the interaction between RuBisCO and 

RCA and of the mechanism of action of RCA activation, figure extracted from [139]. The 

disordered C-terminal extension of RCA is indicated by the letter C. B: Model structure of 

RCA from the higher plant tobacco (Nicotiana tabacum), with C-terminal extensions not 

resolved in the electron microscopy images, represented by black lines (RCSB entry 
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3ZW6.pdb, [140]). C: Model structure of the red-type AAA+ rubisco activase CbbX from the 

purple bacteria R. sphaeroides. The C-terminal extensions not resolved in the negative stain 

images are represented by a black line (RCSB entry 3ZUH.pdb [83]).

Figure 2: Disorder propensity of the C-terminal extension of RuBisCO activase and 

CbbX. A. Hydrophobic Cluster Analysis (HCA, [141]) plots of the C-terminal extension of 

rubisco activase and CbbX from the following organisms, from top to bottom: C. reinhardtii 

(accession number XP_001692244.1); Chlorokybus atmophyticus, isoform β (EST HO20293, 

[78]); Klebsormidium flaccidum, isoforms α2 and α1 (EST HO431775.1, [78]); the purple 

bacterium Rhodobacter sphaeroides (accession number AAC44827.1). B: Schematic 

alignment of RCA from cyanobacteria, chlorophyta and charophyta highlighting their C-

terminal extension. Figure extracted from [78]. C: Schematic alignment of CbbX from purple 

bacteria, rhodophyta and heterokonta. Interestingly, and contrary to the green-type 

viridiplantae, the rhodophyta seem to have lost the C-terminal disordered extensions.

Figure 3: Disorder in the essential pyrenoid component EPYC1 forming membraneless 

pyrenoid with RuBisCO. A: The circular dichroism spectrum of EPYC1 indicates random-

coil structural properties, in contrast to the spectra obtained for RuBisCO and lysozyme. 

Figure extracted from supplementary figure 1 of [91]. B: Schematic of the composition of the 

pyrenoid, with a ratio of EPYC1: RuBisCO from one to four. Among the 135-190 proteins 

that are present in the pyrenoid, we chose to represent RCA that is discussed in this review. C: 

Schematic of the EPYC1 protein sequence with its four repeating domains. The HCA plot of 

the first repeat is shown (C. reinhardtii sequence, accession number PNW77439.1).
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Figure 4: Redox conformational transitions of CP12 governing the light-dark CBB-cycle 

regulation. A: Schematic of the redox transitions of CP12 and GAPDH-CP12 formation. The 

two pairs of cysteine residues of the green-lineage CP12 are redox regulated by the 

thioredoxins (Trx) that are reduced (under light) or oxidised (under dark). B: Under reducing 

conditions, CP12 is fully disordered and highly flexible. C: Under oxidizing conditions, the 

two pairs of cysteine residues form two disulfide bridges, and CP12 is partially disordered. 

The C-terminal bridge is in a stable structure, depicted in blue, while the N-terminal bridge is 

in a region that interconverts between two states on a millisecond timescale, depicted in red: a 

random-coil state and a helical hairpin. D: This latter region unfolds when the C-terminal 

region is bound to GAPDH.

Figure 5: Three chloroplastic intrinsically disordered chaperons of C. reinhardtii. 

HSP33, HSP70b and HSP90C are predicted as containing disordered regions using Pondr-

VLXT (A score higher than 0.5 indicates a propensity for structural disorder)[142]. A: Pondr-

VLXT score of C. reinhardtii HSP33 (accession number, XP_001700446). The prediction of 

the reduced state of HSP33 is obtained using the mutant C274S,C309S,C312S. B: Pondr-

VLXT  score of C. reinhardtii HSP70b (accession number XP_001696432). C: Pondr-VLXT 

score of C. reinhardtii HSP90 (accession number XP_001702984.1).

Figure 5: Examples of C. reinhardtii metabolic enzymes with long intrinsically 

disordered regions . A: Schematic of the metabolic pathways which possess enzymes with 

long intrinsically disordered regions and that are heat-resistant. These enzymes have been 

identified by Zhang et al. [72]. Some enzymes are chloroplastic: the magnesium chelatase 

complex (Mg2+ CC, accession number: XP_001700902.1), the soluble starch synthase III 

(SSS III, accession number: AAY42381.1); while others are targeted to the mitochondrion: 
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the peptide methionine sulfoxide reductase (PMSR, accession number: XP_001689879.1), the 

carbonic anhydrase 8 (CA-8, accession number: XP_001697606.1),the  dihydrolipoamide 

succinyltransferase, the oxoglutarate dehydrogenase E2 component (DLST-2OGDH, 

accession number: XP_001692539.1) and the F1F0 ATP synthetase ε subunit (F1F0 ATP ε, 

accession number: XP_001702609.1). Other IDPs described in this review are also included, 

in particular those regulating the CBB cycle, and chaperones. B: The IUPred2A [143] 

disorder prediction for the mitochondrial DLST-2OGDH and the chloroplastic soluble starch 

synthase III are given as examples. A score higher than 0.5 indicates a propensity for 

structural disorder.
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