T. Kurokawa, K. Suzuki, T. Hayaoka, T. Nakagawa, T. Izawa et al.,

. Cyclophostin, acetylcholinesterase inhibitor from Streptomyces lavendulae, J. Antibiot, vol.46, issue.8, pp.1315-1318, 1993.

G. Seibert, L. Toti, and J. Wink, Treating mycobacterial infections with cyclipostins

. Wo/, , 2008.

S. Bandyopadhyay, S. Dutta, C. D. Spilling, C. M. Dupureur, and N. P. Rath, Synthesis and Biological Evaluation of a Phosphonate Analog of the Natural Acetyl Cholinesterase Inhibitor Cyclophostin, J. Org. Chem, issue.21, pp.8386-8391, 2008.

R. K. Malla, S. Bandyopadhyay, C. D. Spilling, S. Dutta, and C. M. Dupureur, The First Total Synthesis of (±)-Cyclophostin and (±)-Cyclipostin P: Inhibitors of the Serine Hydrolases Acetyl Cholinesterase and Hormone Sensitive Lipase, Org. Lett, issue.12, pp.3094-3097, 2011.

V. Point, R. K. Malla, S. Diomande, B. P. Martin, V. Delorme et al.,

N. P. Rath, C. D. Spilling, and J. F. Cavalier, Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases, J Med Chem, vol.2012, issue.22, pp.10204-10219

E. Vasilieva, S. Dutta, R. K. Malla, B. P. Martin, C. D. Spilling et al., Rat hormone sensitive lipase inhibition by cyclipostins and their analogs, Bioorg Med Chem, vol.23, issue.5, pp.944-952, 2015.

P. C. Nguyen, V. Delorme, A. Bénarouche, B. P. Martin, R. Paudel et al.,

A. Madani, R. Puppo, V. Landry, L. Kremer, P. Brodin et al., Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis
URL : https://hal.archives-ouvertes.fr/hal-01791688

, Scientific Reports, vol.7, issue.1, p.11751, 2017.

P. C. Nguyen, V. S. Nguyen, B. P. Martin, P. Fourquet, L. Camoin et al., Biochemical and structural characterization of TesA, a 31 major thioesterase required for outer-envelope lipid biosynthesis in M. tuberculosis, J Mol Biol, vol.430, issue.24, pp.5120-5136, 2018.

A. Viljoen, M. Richard, P. C. Nguyen, P. Fourquet, L. Camoin et al.,

G. R. Spilling, C. D. Cavalier, J. Canaan, S. Blaise, M. Kremer et al., Cyclipostins and Cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo, J. Biol. Chem, issue.8, pp.2755-2769, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770061

J. Spilling, C. D. Kremer, L. Canaan, S. Cavalier, and J. , Cyclophostin and cyclipostins analogs, new promising molecules to treat mycobacterial-related diseases, Int J Antimicrob. Agents, vol.51, pp.651-654, 2018.

M. P. Chou, A. C. Clements, and R. M. Thomson, A spatial epidemiological analysis of nontuberculous mycobacterial infections in Queensland, Australia. BMC Infect Dis, vol.14, pp.279-279, 2014.

K. Ryan and T. F. Byrd, Mycobacterium abscessus: Shapeshifter of the Mycobacterial World

, Frontiers Microbiol, vol.9, pp.2642-2642, 2018.

M. Wu, D. B. Aziz, V. Dartois, and T. Dick, NTM drug discovery: status, gaps and the way forward, Drug Discov Today, vol.23, issue.8, pp.1502-1519, 2018.

M. Osmani, D. Sotello, S. Alvarez, J. A. Odell, and M. Thomas, Mycobacterium abscessus infections in lung transplant recipients: 15-year experience from a single institution, Transpl Infect Dis, vol.20, issue.2, p.12835, 2018.

Y. J. Ryu, W. Koh, and C. L. Daley, Diagnosis and Treatment of Nontuberculous

J. Van-ingen, D. Wagner, J. Gallagher, K. Morimoto, C. Lange et al., Mycobacterial Lung Disease: Clinicians' Perspectives. Tuberc Respir Dis, vol.79, pp.74-84, 2016.

A. Adjemian, J. Prevots, D. R. Griffith, and D. E. , Poor adherence to management guidelines in nontuberculous mycobacterial pulmonary diseases, Eur. Respir. J, vol.2017, issue.2, p.49

C. Pierre-audigier, A. Ferroni, I. Sermet-gaudelus, M. Le-bourgeois, and C. Offredo,

H. Thien, B. Fauroux, P. Mariani, A. Munck, E. Bingen et al., Age-related prevalence and distribution of nontuberculous mycobacterial species among patients with cystic fibrosis, J Clin Microbiol, vol.43, issue.7, pp.3467-70, 2005.

A. L. Roux, E. Catherinot, F. Ripoll, N. Soismier, E. Macheras et al.,

M. A. Vibet, E. Le-roux, L. Lemonnier, C. Gutierrez, V. Vincent et al., Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France, J Clin. Microbiol, vol.47, issue.12, pp.4124-4132, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01857711

A. Y. Lim, S. H. Chotirmall, E. T. Fok, A. Verma, P. P. De et al., Profiling non-tuberculous mycobacteria in an Asian setting: characteristics and clinical outcomes of hospitalized patients in Singapore, BMC Pulm Med, vol.18, issue.1, pp.85-85, 2018.

A. L. Roux, A. Viljoen, A. Bah, R. Simeone, A. Bernut et al.,

M. Rottman, J. L. Gaillard, L. Majlessi, R. Brosch, F. Girard-misguich et al., The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages, Open Biol, vol.2016, issue.11, p.160185
URL : https://hal.archives-ouvertes.fr/hal-01438481

A. V. Gutierrez, A. Viljoen, E. Ghigo, J. L. Herrmann, L. Kremer et al.,

, Mycobacterium abscessus Complex. Front Microbiol, vol.9, p.1145, 2018.

A. Sanchez-chardi, F. Olivares, T. F. Byrd, E. Julian, C. Brambilla et al., Demonstration of cord formation by rough Mycobacterium abscessus variants: implications for the 30

M. Richard, A. V. Gutiérrez, A. J. Viljoen, E. Ghigo, M. Blaise et al., Mechanistic and Structural Insights Into the Unique TetR-Dependent Regulation of a Drug Efflux Pump in Mycobacterium abscessus, Front. Microbiol, vol.9, p.649, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02137555

M. Richard, A. V. Gutiérrez, A. Viljoen, D. Rodriguez-rincon, F. Roquet-baneres et al.,

M. Everall, I. Parkhill, J. Floto, R. A. Kremer, and L. , Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus, Antimicrob Agents Chemother, vol.63, issue.1, pp.1316-1334, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02137498

A. Rominski, A. Roditscheff, P. Selchow, E. C. Böttger, and P. Sander, Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591

A. Chemother, , vol.72, pp.376-384, 2017.

C. J. Schulze, G. Navarro, D. Ebert, J. Derisi, R. G. Linington et al., Long-Chain Bicyclic Phosphotriesters as a Potent and Selective Antimalarial Chemotype, J. Org. Chem, vol.80, 2015.

M. Zhao, X. Wei, X. Liu, X. Dong, R. Yu et al., Total Synthesis of Marine Cyclic Enol-Phosphotriester Salinipostin Compounds, J. Ocean Univ. China, vol.17, issue.3, pp.683-689, 2018.

Y. Oikawa, K. Sugano, and O. Yonemitsu, Meldrum's acid in organic synthesis. 2. A general and versatile synthesis of .beta.-keto esters, J Org Chem, issue.10, pp.2087-2088, 1978.

N. P. Mulholland, G. Pattenden, and I. A. Walters, A concise and straightforward total synthesis of (+/-)-salinosporamide A, based on a biosynthesis model, Org Biomol Chem, vol.6, issue.15, pp.2782-2789, 2008.

B. P. Martin, E. Vasilieva, C. M. Dupureur, and C. D. Spilling, Synthesis and comparison of the biological activity of monocyclic phosphonate, difluorophosphonate and phosphate analogs of the natural AChE inhibitor cyclophostin, Bioorg Med Chem, vol.23, pp.7529-7534, 2015.

C. Herb, A. Bayer, and M. E. Maier, Total Synthesis of Salicylihalamides A and B, Chem Eur J, vol.10, issue.22, pp.5649-5660, 2004.

A. Pawlik, G. Garnier, M. Orgeur, P. Tong, A. Lohan et al.,

A. L. Conlon, K. Honore, N. Dillies, M. A. Ma, L. Bouchier et al., Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus, Mol Microbiol, vol.90, issue.3, pp.612-641, 2013.

H. Medjahed and J. Reyrat, Construction of Mycobacterium abscessus Defined Glycopeptidolipid Mutants: Comparison of Genetic Tools, Appl Environ Microbiol, vol.75, issue.5, pp.1331-1338, 2009.

A. L. Roux, A. Ray, A. Pawlik, H. Medjahed, G. Etienne et al.,

J. Y. Coppee, K. Chaoui, B. Monsarrat, A. Toubert, M. Daffe et al., Overexpression of proinflammatory TLR-2-signalling lipoproteins in hypervirulent mycobacterial variants, Cell Microbiol, vol.13, issue.5, pp.692-704, 2011.

A. Bernut, J. L. Herrmann, K. Kissa, J. F. Dubremetz, J. L. Gaillard et al., Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation, Proc Natl Acad Sci, vol.111, issue.10, pp.943-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088315

F. Ripoll, C. Deshayes, S. Pasek, F. Laval, J. Beretti et al.,

G. Etienne, J. Gaillard, and J. Reyrat, Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae, vol.8, p.114, 2007.

P. Santucci, V. Point, I. Poncin, A. Guy, C. Crauste et al., LipG a bifunctional phospholipase/thioesterase involved in mycobacterial envelope remodeling, Biosci Rep, vol.38, issue.6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02308921

K. H. Khoo, E. Jarboe, A. Barker, J. Torrelles, C. W. Kuo et al., Altered expression profile of the surface glycopeptidolipids in drug-resistant clinical isolates of Mycobacterium avium complex, J Biol Chem, vol.274, issue.14, pp.9778-85, 1999.

J. P. Sarathy, V. Dartois, and E. J. Lee, The role of transport mechanisms in mycobacterium tuberculosis drug resistance and tolerance, Pharmaceuticals (Basel), vol.2012, issue.11, pp.1210-1245

S. Dutta, R. K. Malla, S. Bandyopadhyay, C. D. Spilling, and C. M. Dupureur, Synthesis and kinetic analysis of some phosphonate analogs of cyclophostin as inhibitors of human acetylcholinesterase, Bioorg. Med. Chem, issue.6, pp.2265-74, 2010.

V. Point, R. K. Malla, F. Carriere, S. Canaan, C. D. Spilling et al., Enantioselective inhibition of microbial lipolytic enzymes by nonracemic monocyclic enolphosphonate analogues of cyclophostin, J Med Chem, vol.56, issue.11, pp.4393-4401, 2013.

K. R. Tallman, S. R. Levine, and K. E. Beatty, Small Molecule Probes Reveal Esterases with

, Persistent Activity in Dormant and Reactivating Mycobacterium tuberculosis, ACS Infect. Dis, vol.2016, issue.12, pp.936-944

J. Lehmann, T. Y. Cheng, A. Aggarwal, A. S. Park, E. Zeiler et al.,

O. Kandror, J. C. Sacchettini, D. B. Moody, E. J. Rubin, and S. A. Sieber, An Antibacterial beta-Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis, Angew Chem Int Ed Engl, vol.57, issue.1, pp.348-353, 2018.

E. V. Koonin, P. Orthologs, and E. Genomics, Annu Rev Genet, vol.39, issue.1, pp.309-338, 2005.

J. E. Griffin, J. D. Gawronski, M. A. Dejesus, T. R. Ioerger, B. J. Akerley et al., High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism, PLOS Pathog, vol.7, issue.9, p.1002251, 2011.

C. M. Sassetti, D. H. Boyd, and E. J. Rubin, Genes required for mycobacterial growth defined by high density mutagenesis, Mol Microbiol, vol.48, issue.1, pp.77-84, 2003.

N. Nasir, A. Anant, R. Vyas, and B. K. Biswal, Crystal structures of Mycobacterium tuberculosis HspAT and ArAT reveal structural basis of their distinct substrate specificities, Scientific Reports, vol.6, p.18880, 2016.

P. C. Nguyen, V. Delorme, A. Bénarouche, A. Guy, V. Landry et al.,

M. Camoin, L. Crauste, C. Galano, J. Durand, T. Brodin et al., Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis, vol.81, pp.414-424, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875577

J. C. Sacchettini and D. R. Ronning, The mycobacterial antigens 85 complex--from structure to function: response, Trends in Microbiology, vol.8, issue.10, pp.1843-1849, 2000.

K. M. Backus, M. A. Dolan, C. S. Barry, M. Joe, P. Mcphie et al.,

T. L. Davis, B. G. Barry, and C. E. , The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions, J. Biol. Chem, issue.36, pp.25041-25053, 2014.

L. Cai, X. Zhao, T. Jiang, J. Qiu, L. Owusu et al., Prokaryotic Expression, Identification and Bioinformatics Analysis of the Mycobacterium tuberculosis Rv3807c

, Gene Encoding the Putative Enzyme Committed to Decaprenylphosphoryl-d-arabinose Synthesis

, Indian journal of microbiology, vol.54, issue.1, pp.46-51, 2014.

J. A. Mills, K. Motichka, M. Jucker, H. P. Wu, B. C. Uhlik et al., Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability, J Biol Chem, issue.42, pp.43540-43546, 2004.

D. M. Ferraris, R. Spallek, W. Oehlmann, M. Singh, and M. Rizzi, Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis, Proteins, vol.83, issue.2, pp.389-94, 2015.

J. O'brien, I. Wilson, T. Orton, and F. Pognan, Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, Eur J Biochem, vol.267, issue.17, pp.5421-5426, 2000.

T. Christophe, M. Jackson, H. K. Jeon, D. Fenistein, M. Contreras-dominguez et al.,

A. Genovesio, J. P. Carralot, F. Ewann, E. H. Kim, S. Y. Lee et al., High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors, PLoS pathogens, vol.5, issue.10, p.1000645, 2009.

R. Felix, C. Gupta, R. Geden, S. Roberts, J. Winder et al.,

C. Reed, J. K. Wright, A. E. Rohde, and K. H. , Selective Killing of Dormant Mycobacterium tuberculosis by Marine Natural Products, Antimicrob Agents Chemother, vol.2017, issue.8, pp.743-760

W. Strober, Trypan Blue Exclusion Test of Cell Viability, Current Protocols in Immunology, vol.21, issue.1, 1997.

V. K. Sambandamurthy, S. C. Derrick, T. Hsu, B. Chen, M. H. Larsen et al.,

M. Chen, J. Kim, S. A. Porcelli, J. Chan, S. L. Morris et al., Mycobacterium tuberculosis DeltaRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis, Vaccine, vol.24, pp.6309-6320, 2006.

D. Blanco-ruano, D. M. Roberts, R. Gonzalez-del-rio, D. Álvarez, and M. J. Rebollo,

E. Herrán and A. Mendoza, Antimicrobial Susceptibility Testing for Mycobacterium sp, Mycobacteria Protocols, 2015.

, , pp.257-268

A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels, Anal Chem, issue.5, pp.850-858, 1996.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol, vol.26, issue.12, pp.1367-1372, 2008.

J. A. Vizcaino, E. W. Deutsch, R. Wang, A. Csordas, F. Reisinger et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nat Biotechnol, vol.32, issue.3, pp.223-226, 2014.