, World Health Organization, 2018.

M. Daffe, D. C. Crick, and M. Jackson, Genetics of capsular polysaccharides and cell envelope (Glyco) lipids. Microbiol Spectr 2, p.14, 2014.

P. Gopal, M. Yee, J. Sarathy, J. L. Low, J. P. Sarathy et al., Pyrazinamide resistance is caused by two distinct mechanisms: prevention of coenzyme A depletion and loss of virulence factor synthesis, ACS Infect Dis, vol.2, pp.616-626, 2016.

S. S. Chavadi, U. R. Edupuganti, O. Vergnolle, F. I. Singh, S. M. Soll et al., Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria, J Biol Chem, vol.286, pp.24616-24625, 2011.

R. Bailo, A. Bhatt, and J. A. Ainsa, Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development, Biochem Pharmacol, vol.96, pp.159-167, 2015.

P. Mohandas, W. C. Budell, E. Mueller, A. Au, G. V. Bythrow et al., Pleiotropic consequences of gene knockouts in the phthiocerol dimycocerosate and phenolic glycolipid biosynthetic gene cluster of the opportunistic human pathogen Mycobacterium marinum, FEMS Microbiol Lett, vol.363, p.16, 2016.

C. Astarie-dequeker, L. Guyader, L. Malaga, W. Seaphanh, F. K. Chalut et al., Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids, PLoS Pathog, vol.5, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02333313

K. Soetaert, C. Rens, X. M. Wang, J. De-bruyn, M. A. Laneelle et al., Increased vancomycin susceptibility in mycobacteria: a new approach to identify synergistic activity against multidrug-resistant mycobacteria, Antimicrob Agents Chemother, vol.59, pp.5057-5060, 2015.

L. Alibaud, Y. Rombouts, X. Trivelli, A. Burguiere, S. L. Cirillo et al., A Mycobacterium marinum TesA mutant defective for major cell wallassociated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos, Mol Microbiol, vol.80, pp.919-934, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641589

A. Arbues, W. Malaga, P. Constant, C. Guilhot, J. Prandi et al., Trisaccharides of phenolic glycolipids confer advantages to pathogenic mycobacteria through manipulation of host-cell patternrecognition receptors, ACS Chem Biol, vol.11, pp.2865-2875, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02326069

M. B. Reed, P. Domenech, C. Manca, H. Su, A. K. Barczak et al., A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response, Nature, vol.431, pp.84-87, 2004.

L. R. Camacho, D. Ensergueix, E. Perez, B. Gicquel, and C. Guilhot, Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis, Mol Microbiol, vol.34, pp.257-267, 1999.

A. Rao and A. Ranganathan, Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis, Mol Genet Genomics, vol.272, pp.571-579, 2004.

S. J. Waddell, G. A. Chung, K. J. Gibson, M. J. Everett, D. E. Minnikin et al., Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv, Lett Appl Microbiol, vol.40, pp.201-206, 2005.

M. Jain, C. J. Petzold, M. W. Schelle, M. D. Leavell, J. D. Mougous et al., Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling, Proc Natl Acad Sci, vol.104, pp.5133-5138, 2007.

M. Kotowska and K. Pawlik, Roles of type II thioesterases and their application for secondary metabolite yield improvement, Appl Microbiol Biotechnol, vol.98, pp.7735-7746, 2014.

P. C. Nguyen, V. S. Nguyen, B. P. Martin, P. Fourquet, L. Camoin et al., Biochemical and structural characterization of TesA, a Major Thioesterase required for outer-envelope lipid biosynthesis in Mycobacterium tuberculosis, J Mol Biol, vol.430, pp.5120-5136, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01894053

S. Gu, J. Chen, K. M. Dobos, E. M. Bradbury, J. T. Belisle et al., Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain, Mol Cell Proteomics, vol.2, pp.1284-1296, 2003.

M. Jain and J. S. Cox, Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis, PLoS Pathog, vol.1, p.2, 2005.

P. W. Riddles, R. L. Blakeley, and B. Zerner, Reassessment of Ellman's reagent, Methods Enzymol, vol.91, pp.49-60, 1983.

M. C. Hunt, K. Solaas, K. Bf, and A. Se, Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism, J Biol Chem, vol.277, pp.1128-1138, 2002.

V. Delorme, R. Dhouib, S. Canaan, F. Fotiadu, F. Carriere et al., Effects of surfactants on lipase structure, activity, and inhibition, Pharm Res, vol.28, pp.1831-1842, 2011.

P. C. Nguyen, V. Delorme, A. Benarouche, B. P. Martin, R. Paudel et al., Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis, Sci Rep, vol.7, p.11751, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01791688

R. Goude, D. M. Roberts, and T. Parish, Electroporation of mycobacteria, Methods Mol Biol, vol.1285, pp.117-130, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134392

C. Rens, F. Laval, M. Daffe, O. Denis, R. Frita et al., Effects of Lipid-lowering drugs on vancomycin susceptibility of mycobacteria, Antimicrob Agents Chemother, vol.60, pp.6193-6199, 2016.

G. M. Sastry, M. Adzhigirey, T. Day, A. R. Sherman, and W. , Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments, J Comput Aided Mol Des, vol.27, pp.221-234, 2013.

R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood et al., Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, J Med Chem, vol.49, pp.6177-6196, 2006.

K. Arai, T. Ishimitsu, S. Fushinobu, H. Uchikoba, H. Matsuzawa et al., Active and inactive state structures of unliganded Lactobacillus casei allosteric L-lactate dehydrogenase, Proteins, vol.78, pp.681-694, 2010.

E. J. Goldsmith, S. R. Sprang, R. Hamlin, N. H. Xuong, and R. J. Fletterick, Domain separation in the activation of glycogen phosphorylase a, Science, vol.245, pp.528-532, 1989.

M. S. Ravindran, S. P. Rao, X. Cheng, A. Shukla, A. Cazenave-gassiot et al., Targeting lipid esterases in mycobacteria grown under different physiological conditions using activity-based profiling with tetrahydrolipstatin (THL), Mol Cell Proteomics, vol.13, pp.435-448, 2014.

H. Li, L. M. Schopfer, F. Nachon, M. T. Froment, P. Masson et al., Aging pathways for organophosphate-inhibited human butyrylcholinesterase, including novel pathways for isomalathion, resolved by mass spectrometry, Toxicol Sci, vol.100, pp.136-145, 2007.

S. Amara, V. Delorme, M. Record, and F. Carriere, Inhibition of phospholipase A1, lipase and galactolipase activities of pancreatic lipase-related protein 2 by methyl arachidonyl fluorophosphonate (MAFP), 2012.

, Biochim Biophys Acta, vol.1821, pp.1379-1385

R. K. Berge, S. E. Farstad, and M. , Discontinuities in Arrhenius plots due to formation of mixed micelles and change in enzyme substrate availability, FEBS Lett, vol.109, pp.194-196, 1980.

R. K. Berge, S. E. Farstad, and M. , Variations in the activity of microsomal palmitoyl-CoA hydrolase in mixed micelle solutions of palmitoyl-CoA and nonionic detergents of the triton X series, Biochim Biophys Acta, vol.666, pp.25-35, 1981.

R. K. Berge and M. Farstad, Purification and characterization of long-chain acyl-CoA hydrolase from rat liver mitochondria, Eur J Biochem, vol.96, pp.393-401, 1979.

F. Wang, R. Langley, G. Gulten, W. L. Sacchettini, and J. C. , Identification of a type III thioesterase reveals the function of an operon crucial for Mtb virulence, Chem Biol, vol.14, pp.543-551, 2007.

C. M. Goins, T. D. Sudasinghe, X. Liu, Y. Wang, G. A. O'doherty et al., Characterization of Tetrahydrolipstatin and Stereoderivatives on the Inhibition of Essential Mycobacterium tuberculosis Lipid Esterases, Biochemistry, vol.57, pp.2383-2393, 2018.

S. K. Parker, R. M. Barkley, J. G. Rino, and M. L. Vasil, Mycobacterium tuberculosis Rv3802c encodes a phospholipase/thioesterase and is inhibited by the antimycobacterial agent tetrahydrolipstatin, PLoS ONE, vol.4, p.4281, 2009.

J. C. Seeliger, C. M. Holsclaw, M. W. Schelle, Z. Botyanszki, S. A. Gilmore et al., Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis, J Biol Chem, vol.287, pp.7990-8000, 2012.

M. K. Ritchie, L. C. Johnson, J. E. Clodfelter, C. Pemble, B. E. Fulp et al., Crystal structure and substrate specificity of human thioesterase 2: insights into the molecular basis for the modulation of fatty acid synthase, J Biol Chem, vol.291, pp.3520-3530, 2016.

V. E. Fako, J. T. Zhang, and J. Y. Liu, Mechanism of orlistat hydrolysis by the thioesterase of human fatty acid synthase, ACS Catal, vol.4, pp.3444-3453, 2014.

P. Hadvary, W. Sidler, W. Meister, W. Vetter, and H. Wolfer, The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase, J Biol Chem, vol.266, pp.2021-2027, 1991.

C. Pemble, L. C. Johnson, S. J. Kridel, and W. T. Lowther, Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat, Nat Struct Mol Biol, vol.14, pp.704-709, 2007.

Z. Huang, P. Payette, K. Abdullah, C. Wa, and K. Bp, Functional identification of the active-site nucleophile of the human 85-kDa cytosolic phospholipase A2, Biochemistry, vol.35, pp.3712-3721, 1996.

J. E. Casida and G. B. Quistad, Serine hydrolase targets of organophosphorus toxicants, Chem Biol Interact, pp.277-283, 2005.

L. L. Yang, X. Yang, G. B. Li, K. G. Fan, Y. Pf et al., An integrated molecular docking and rescoring method for predicting the sensitivity spectrum of various serine hydrolases to organophosphorus pesticides, J Sci Food Agric, vol.96, pp.2184-2192, 2016.

I. Petrikovics, M. Wales, M. Budai, J. C. Yu, and M. Szilasi, Nano-intercalated organophosphorushydrolyzing enzymes in organophosphorus antagonism, AAPS PharmSciTech, vol.13, pp.112-117, 2012.

K. R. Tallman, S. R. Levine, and K. E. Beatty, Smallmolecule probes reveal esterases with persistent activity in dormant and reactivating Mycobacterium tuberculosis, ACS Infect Dis, vol.2, pp.936-944, 2016.

A. Aloulou, J. A. Rodriguez, S. Fernandez, D. Van-oosterhout, P. D. Carriere et al., Exploring the specific features of interfacial enzymology based on lipase studies, Biochim Biophys Acta, vol.1761, pp.995-1013, 2006.