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Abstract: Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms.
In metazoans, they act as host defense factors by eliminating microbial pathogens. But they also
help to select the colonizing bacterial symbionts while coping with specific environmental challenges.
Although many AMPs share common structural characteristics, for example having an overall size
between 10–100 amino acids, a net positive charge, a γ-core motif, or a high content of cysteines,
they greatly differ in coding sequences as a consequence of multiple parallel evolution in the face of
pathogens. The majority of AMPs is specific of certain taxa or even typifying species. This is especially
the case of annelids (ringed worms). Even in regions with extreme environmental conditions (polar,
hydrothermal, abyssal, polluted, etc.), worms have colonized all habitats on Earth and dominated in
biomass most of them while co-occurring with a large number and variety of bacteria. This review
surveys the different structures and functions of AMPs that have been so far encountered in annelids
and nematodes. It highlights the wide diversity of AMP primary structures and their originality that
presumably mimics the highly diverse life styles and ecology of worms. From the unique system that
represents marine annelids, we have studied the effect of abiotic pressures on the selection of AMPs
and demonstrated the promising sources of antibiotics that they could constitute.

Keywords: Antibiotics; annelids; nematodes; AMP; extremophiles

1. Introduction

Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms,
from archaea to mammals [1–3]. In pluricellular organisms, they act as key actors of immunity
by operating in the first line of defense towards microbes [4–7] such as bacteria, fungi, and protozoa
or viruses that attempt to invade and to proliferate into the host [8–12]. AMPs also contribute to
symbiostasis (i.e., the regulation of mutualistic and commensal symbionts to avoid proliferation) in
vertebrates and invertebrates by controlling, shaping, and confining the symbiotic microflora in specific
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anatomical compartments (gut, bacteriomes, skin) [13–15]. Because symbionts have been shown to
represent a rapid source of innovation for the host to adapt to changing habitats, AMPs are also
indirectly involved in the ability of animals and plants to cope with environmental changes [16–19].
In metazoans, active AMPs are generally matured from a larger inactive protein precursor containing
a signal peptide, a proregion, and the AMP itself. The ribosomal synthesis and/or the secretion of
AMPs by epithelial and circulating cells are well documented to be regulated by microbial challenges,
while few data also evidence an influence of abiotic factors. However, there are increasing examples of
an endogenous role of AMPs, i.e., they are active towards the expressing host and work as cannibal
toxins [20].

Regarding their application as type of therapeutic drugs, after their first discovery in the early
1980s, AMPs appeared as a promise of novel antibiotics to address issues about the multi-drug resistance
(MDR) of pathogenic bacteria. Animals are the most important producers of AMPs (2298 versus 349
from plants or 342 from bacteria), although very poorly described in worms, with only 20 AMPs
discovered out of seven species [21]. The definition of an AMP is only based on physico-chemical
criteria (<100 amino acids in length, amphipathic, cationic) and on their properties to kill microbes.
Recently, a unifying structural signature present in cysteine-stabilized AMPs was discovered: Theγ-core
motif [22]. Virtually all peptides sharing the γ-core motif interact with the negatively-charged lipid
membranes causing ion-channel dysfunction or membrane pore formation in bacteria. One important
point is that the multi-target interaction and mechanism of action (MOA) of AMPs with the bacterial
membrane makes the appearance of resistance to AMPs more difficult compared to conventional
antibiotics. AMPs and AMP-resistance mechanisms have presumably co-evolved through a transitory
host–pathogen balance that has characterized the existing AMP collection [23]. Additional bioactivity
features of AMPs such as their natural antibacterial biofilm activities, their chemotaxis of immune
cells, immunomodulation, endotoxin neutralization, their mediation of nerve-repair activities [23]
also add value/benefit to AMPs compared to conventional antibiotics [3,11,24]. However, most of the
existing sequences of AMPs have never been exploited so far. Thirty years after their discovery, a better
understanding of their MOA, modifications (structural and/or residues substitution), and synthesis is
reigniting the commercial development of AMPs, which “stage a comeback” [25].

The production of AMPs and their contribution to host immunity have been well demonstrated in
worms (Table 1) [2,12,26–30]. Their involvement in resistance to microbial infection and in symbiostasis
is sustained by their strategic location in immune cells (phagocytes), in body fluids (pseudo-coelom,
coelom, and blood) and at the interfaces between organisms and their environment, i.e., at epithelial
cell levels such as intestinal cells and epidermis cells. The first worm AMP (namely cecropin P1)
was isolated and identified in 1989 [31] by the team of H. Boman, who just discovered the existence
of AMPs in the butterfly Hyalophora cecropia [32]. The cecropin P1 was originally thought to be a
porcine cecropin until the workers who isolated it provided evidence in 2003 that, in fact, this AMP
originated from the pig intestinal parasitic nematode Ascaris suum, and not from its mammalian
host [19]. This underlines the non-negligible difficulty and importance of separating host DNA, RNA,
or peptides from those of potential parasites and symbionts when searching for a new component.
To date, cecropins have been identified mainly in ecdysozoans (insects and nematodes), in one marine
tunicate, and in bacteria [18,33,34], but neither in lophotrochozoans (molluscs, annelids, etc.) nor
in vertebrates.

In 1996, ABF-type peptides (also called nematode defensins) were discovered in nematodes by
Kato et al. [35]. Like mollusc and insect defensins, they contain eight cysteine residues and harbor a
cysteine-stabilized alpha helix and beta sheet (CSαβ) structure. These common features may suggest
an evolution from a common ancestor [36]. However, the lack of a significant sequence similarity or a
conserved genomic organization (exon–intron structure) suggests that these groups of AMPs have
rather emerged through convergent evolution [37]. In 1998, Banyai and Patthy demonstrated the
antibacterial activities of saposin-like proteins (SPP) (called caenopores) from Caenorhabditis elegans,
a family of AMPs similar to the amoebapores of the unicellular Entamoeba histolytica and the granulysin
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from human cytotoxic T lymphocytes [38]. Amoebapore-like SPPs might have been the first AMPs
since this family emerged in protists, i.e., before the advent of multi-celled organisms [39]. In 2002,
Mallo et al. observed, in C. elegans again, the induced expression of a neuropeptide-like peptide (nlp)
upon bacterial infection. Later, in 2004, Ewbank’s group indirectly demonstrated an antifungal activity
for nlp-31 [40]. Until now, nlps have not been identified in non-nematode species, and their MOA and
3D structures remain to be solved. As detailed below, other AMPs were identified in nematodes, but,
to our knowledge, except for cecropins, none of these were purified from crude extracts of worms; their
predicted “in silico” sequences are issued from homology-based searches in genomes or transcriptomes
starting from already described AMP sequences in other invertebrates [41]. Due to the rapid molecular
evolution and high diversity of AMPs, one can assume that not all families of AMPs are characterized
yet in nematodes. Efforts were also mainly focused on C. elegans and should be extended to wild
species and enlarged to different taxa of nematodes. However, one major problem when searching for
new AMPs from nematodes, as we have tried with the marine Metoncholaimus and Oncholaimus spp.,
is their tiny size (0.2 mm diameter) combined with their highly variable and patchy distribution in
their natural habitat, making it complicated and not reproducible the collect of a sufficient number of
individuals. Although promising at first, the too low quantity of material was a clear limitation to the
use of the bioassay-guided purification, which remains the best and only strategy to discover new
AMPs (unpublished data).

By contrast to nematodes, most annelid AMPs were biochemically isolated from diverse wild
species from different taxa. The first annelid AMP was lumbricin-1 isolated from the earthworm
Lumbricus rubellus in 1998 [42] and later in leeches [43]. Its MOA, as well as its 3D structure, have
yet to be described. The relatively low antimicrobial activities of lumbricin-like AMPs suggest that
the microbial clearance is not the main biological function of this molecule. In 2004, the first member
of the macin family (theromacin) was characterized in leeches [44]. Despite their different disulfide
arrays, macins and invertebrate defensins share the CSαβ motif also characteristic of the members
of the scorpion toxin-like superfamily [6]. By contrast with defensins, macins have been shown to
exert neurotrophic and proliferation effects, in addition to their bactericidal activities [6,43]. Based
on their functions, their expression sites, their occurrence, and their evolutionary relationship in
the animal kingdom, the possibility to consider macins as defensins could be discussed. Another
family of cysteine-rich AMPs was characterized in annelids: The BRICHOS (so called from Bri2,
CHOndromodulin, and proSurfactant protein C) AMP family; the first member was arenicin isolated
from the body fluid of Arenicola marina in 2004 [14]. At this time, the presence of a BRICHOS domain
in the proregion of the arenicin precursor was not noticed by the authors and was first mentioned later
in 2013 in a review written by Knight et al. who discovered the BRICHOS domain in 2002 [45,46].
The evidence of other members and the study of their gene evolution confirm the existence of the
BRICHOS-AMP family, which seems to be restricted to marine worms [47]. Even if AMPs from this
family do not share any sequence similarity, they harbor a beta hairpin structure stabilized by one or
two disulphide bridges [48].

This review surveys the wide diversity of primary and tertiary structures of worm-produced
AMPs as a consequence of a hundred millions years of worms’ evolution and diversification and
natural selection occurring at the interspecific level according to peculiar lifestyles and habitats. We
focus on annelids, which represent the worm clade for which the research of AMPs has not been
targeted on genetic/laboratory models as performed in nematodes, but is rather the result of species
exploration over a variety of environments (marine, terrestrial, freshwater, etc.). This review highlights
that none of the AMP families are universally expressed and that none of the studied worm species
seem to produce all types of AMPs, even if the lack of genomes does not allow to firmly confirm
this observation. Thus, the exploration and study of novel and unconventional worm species appear
as a promising source of new AMPs and of different modes of immune defense in link with the
ecology/habitat of the species of interest.
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Table 1. Dates of antimicrobial peptides’ (AMPs) discovery in nematodes and in annelids.

Worm Phylum Dates AMP Families References

Nematodes

1989 Cecropins [31]

1996 ABFs [35]

1998 Coenopores [38]

2002 Caenacins [39]

2004 Nlps [40]

Annelids

1998 Lumbricins [42]

2004 Macins [44]

2004 and 2013 BRICHOS-AMPs [14,46]

2004 Perinerin [49]

2006 Hedistin [50]

2016 Ms-Hemerycin [51]

2. AMPs Diversity in Annelids and Nematodes

AMPs’ capacity to kill microorganisms lies in their ability to disrupt and/or permeate the target
cell membranes. Being generally cationic, they usually accumulate at the membrane surface (negatively
charged) of the bacteria. Then, above a certain concentration threshold, they disrupt the cell membrane
through very diverse and complex mechanisms [9]. Most of the MOAs studied act via pore formation
(barrel-stave or toroidal models) or by non-pore mechanisms, such as a carpet-like mechanism.
In both the pore models, at increasing concentrations, peptides begin to orientate perpendicular to the
membrane and insert into the bilayer: In the toroidal model, the peptides are always associated with
the lipid head groups; in the barrel-stave model, they form a bundle in the membrane with a central
lumen (the peptides represent the staves of the barrel) [9,52].

Alternatively, in the carpet model, the peptides cover the membrane surface in a carpet-like
manner (orientated in parallel to the membrane) and at high concentrations, they disrupt the bilayer in
a detergent-like manner, leading to the formation of micelles [53]. Some AMPs polarize the membrane,
forming anionic lipid clusters [54]. A minority of AMPs, however, do not cause membrane disruption:
After crossing the bacterial cell membrane, they act on intracellular targets (such as nucleic acids and
functional proteins) to activate cell death [55].

AMPs can be classified into several subgroups according to their secondary structure and
biochemical characteristics: (i) α-helix peptides, containing one or more helices with spatially disjunct
hydrophobic and hydrophilic surfaces [56]; (ii) β-sheet peptides, with β-hairpin-like structure, rich
in cysteine and containing disulfide bonds; (iii) α-helix/β-sheets peptides with mixed α-helical and
β-sheet organization [4,57]; (iv) extended peptides, which do not adopt regular secondary structures,
containing a high proportion of one or two amino acids (such as proline, glycine, tryptophan, etc.)
often essential for their antimicrobial activity [57,58]; and (v) peptides derived from larger molecules,
exerting multiple functions [59]. Interestingly, representatives from all of these structural groups have
been identified in worms (summarized in Table 2). They represent the main subject of this article and
are subsequently described below.

2.1. α-helix Peptides

2.1.1. α-helix Peptides in Nematodes

Cecropin and Caenopore Families

Cecropins and cecropin-like peptides have been identified and characterized in insects [60,61],
nematodes [19,29], tunicates [18], and bacteria [34]. In worms, cecropins have only been detected in
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the nematode Ascaris suum (cecropin-P1, -P2, -P3 and -P4), a pig intestinal parasite, and other species of
Ascarididae (at least in A. lumbricoides and Toxocara canis) [19,62]. These AMPs are short in length, rich
in serine, not stabilized by disulfide bonds, and display a linear and amphipathic α-helical structure
(Figure 1) [29,63].

Table 2. Repartition of the different groups of identified AMPs according to the phylum and the
respective habitats of the worms.

Structure (Group) AMPs Worm
Phylum

Worm
Habitat

Linear α-helix (i)
Cecropins Nematode Terrestrial

Caenopores Nematode Terrestrial
Hedistin Annelid Marine

β-sheet (ii) BRICHOS-AMPs Annelid Marine

Mixed α-helix/β-sheet (iii) ABFs Nematode Terrestrial
Macins Annelid Freshwater

Enriched with specific amino
acids (iv)

Neuropeptide-like Nematode Terrestrial
Caenacins Nematode Terrestrial

Lumbricins Annelid Marine and Freshwater
Derived from larger

molecules (v)
Perinerin Annelid Marine

Ms-Hemerycin Annelid Marine
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Ascaris cecropins exhibit potent antimicrobial activity. They are upregulated upon bacterial 
challenge and are active against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, 
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Figure 1. Three-dimensional structure of cecropin-P1, representative of cecropin family (PDB ID:
2N92) [31]. Picture generated using PyMOL (TM) 2.3.2 software: BioLuminate, Schrödinger, LLC, New
York, NY, USA 2019 (www.pymol.org).

Cecropins are derived from precursor molecules, with a common structure, i.e., having a signal
peptide, a mature peptide, and a pro-region (Figure 2) [64]. As for α-defensins (mammalian AMPs),
the acidic pro-region may inhibit the antimicrobial/cytotoxic activity of the basic mature region,
protecting the cells of AMP production sites [65]. The primary structures of the mature cecropins are
highly conserved and consist of 31 residues [62].
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Ascaris cecropins exhibit potent antimicrobial activity. They are upregulated upon bacterial
challenge and are active against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis,
Micrococcus luteus), Gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhimurium,
Escherichia coli), and also fungi (Saccharomyces cervisae, Candida albicans) (Table 3) [62,66,67].
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The interaction between cecropin and the bacterial membrane is initiated by the C-terminal
α-helical structure that plays a crucial role in lipopolysaccharide recognition. Cecropins exert pore
formation as a bacterial-killing mechanism [33].Recently, disease-resistant fish and shellfish strains were
produced by transgenesis of cecropins-P1 gene, exhibiting elevated resistance to infection by different
pathogens [68,69]; cecropin-P4 was used against chicken and pig pathogens as a food supplement to
livestock production [70].

Caenopores (from Caenorhabditis elegans) belong to the saposin-like protein (SAPLIP) superfamily,
a group of small proteins of different sizes and various cellular functions [71]. They are cationic
peptides, characterized by the conserved positions of six cysteine residues involved in the formation
of three disulfide bonds (Figure 3) [29]. Twenty-three different caenopore-coding genes have been
evidenced in C. elegans, but antimicrobial activities have only been described for caenopore-1 (SPP-1),
caenopore-5 (SPP-5), and caenopore-12 (SPP-12) [72–74].
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These three molecules are active against Bacillus megaterium; moreover SPP-5 shows significant
activity against E. coli and SPP-12 is active against B. thuringiensis (Table 3) [72,75]. As reported by
several authors, natural variants in this AMP family (33 AMPs encoded by 28 different genes) are
inducible by different microbes and have a different target spectrum against bacteria and fungi [72,73,76].
Under acidic conditions (pH 5.2), these AMPs are able to form pores, leading to the permeabilization
of the bacterial membranes [72]. SSP-5 and SSP-1 are exclusively expressed in the intestine, probably
to kill ingested bacteria, and SPP-12 is exclusively expressed in the two pharyngeal neurons [73,75].
In general, it seems that they contribute to both the digestion and the immune defense of the host [73].
To date, only the 3D structure of SSP-5 has been solved at 0.6 Å of resolution, revealing the existence of
two conformers (Figure 4).
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Figure 4. Three-dimensional structure of the SSP-5 conformers: (A) Cis isomer (PDB ID: 2JS9) [77];
(B) Trans isomer (PDB ID: 2JSA) [77]. Helices in purple and disulfide bridges in yellow. Pictures
generated using PyMOL (TM) 2.3.2 software (www.pymol.org).
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The cis and trans conformers (differing in the isomerization of the peptide bond between Cys80
and Pro81) consist of a bundle of five amphipathic helices which are arranged in a folded leaf with
two halves [77]. The 3D structures of both conformers display a large hydrophobic region and an
uniformly distributed charged residue covering the surface (Figure 5). SSP-5 was found to exert its
antibacterial activity by pore formation (as already shown for amoebapore-like peptides which also
belong to the SAPLIP family) [77].
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Figure 5. SSP-5 cis (A) and trans (B) 3D structures of the surface. Hydrophobic, charged, and polar
residues are represented in grey, blue, and red, respectively. Pictures generated using PyMOL (TM)
2.3.2 software (www.pymol.org).

2.1.2. α-helix Peptides in Annellids

Hedistin

Hedistin is a linear peptide, identified from the marine annelid Hediste diversicolor [50]. To date,
no hedistin-like sequences have been found in other species. This ragworm is an euryhaline
marine polychaete (order of Phyllodocida) able to withstand great variations in salinity. Hedistin
(primary structure: LGAWBrLAGKVAGTVATYAWBrNRYV) is the only annelid peptide containing
bromotryptophan residues. As shown for cathelicidin peptides, this modification might be the
result of an adaptation that makes the AMP less vulnerable to proteolysis for steric reasons [50,78].
It also carries a C-terminal amidation that increases the cationic charge, and thus its attraction for
negatively charged bacterial membranes [50,79]. Hedistin is active against Gram-positive bacteria
(especially Micrococcus luteus and Micrococcus nishinomiyaensis) and the Gram-negative bacterium
Vibrio alginolyticus (Table 3) [50]. The 3D structure presents three segments, forming a helix–bend–helix
conformation that suggests bacterial membrane disruption through a carpet model [50,80]. Hedistin is
constitutively and strongly produced by NK-like cells circulating in the body cavity of annelids [50].

2.2. β-sheet Peptides in Annelids

BRICHOS-AMPs Family

Surprisingly, members of this AMP family have been identified in polychaetes only. These AMPs
are processed from a larger precursor containing a BRICHOS domain (Figure 6) [14,48,81]. This domain
consists of 100 amino acids and the different BRICHOS family members always show the following

www.pymol.org
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structure (Figure 6): (i) A hydrophobic region (a signal peptide or a transmembrane region),
(ii) a proregion with a linker and a BRICHOS domain, and (iii) a C-terminal region whose amino-acid
residues fold into a double stranded β-sheet (a cysteine rich AMP). While present in a wide range of
organisms, the functional properties of the BRICHOS domain has only been explored in mammals [71].
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In humans, BRICHOS is a constituent of protein families associated with amyloid formation, found
in several major human diseases (Alzheimer’s, Parkinson’s, diabetes mellitus, dementia, respiratory
distress, and cancer) [48,82]. The BRICHOS family member proSP-C (prosurfactant protein C), although
the most studied, has no antimicrobial activity due to the absence of the C-terminal extension, i.e.,
the AMP part. However, in case of proSP-C, BRICHOS binds to the amyloidogenic transmembrane
region, preventing it from self-aggregating. The second well studied protein, Bri2, possesses the
general structure of BRICHOS family proteins. Current data show that the Bri2 domain interacts as a
molecular chaperone on its C-terminal extension (Bri23) to maintain a β-hairpin structure, which has
no antimicrobial activity either [82].

In marine annelids, by contrast with the relatively well conserved BRICHOS domain, the AMP
part of the precursor shows a high diversity with sequences that do not share any homologies,
suggesting that a strong selection at the interspecific level has probably occurred probably in link
with the habitat of the worms [47]. The first discovered members of this family were arenicin-1 and
arenicin-2 [14], isolated from the coelomocytes of Arenicola marina, a coastal polychaete. This lugworm
inhabits sand flats, characterized by high fluctuations of temperature, salinity, oxygen, and sulphide
concentrations [83]. The primary structures of the two cyclic isoforms differ only by one amino acid
substitution (Val10Ile). They are characterized by 21 residues with a single disulfide bond that connects
the N- and C-terminus (Cys3 – Cys20). Later, a third isoform, termed arenicin-3, showing significant
differences in the sequence from the first two arenicins and containing one additional disulfide bond
(Cys7 – Cys16) was isolated and characterized [84]. Another member of this AMP family named
alvinellacin was isolated later and identified from Alvinella pompejana the emblematic Pompeii worm
that inhabits the hottest part of the black chimneys of the deep eastern Pacific ocean [81]. This animal is
considered as the most thermotolerant and eurythermal animal in the world, facing bursts of elevated
temperatures as high as 80 ◦C but also harsh acidic conditions and high pressures (up to 300 bars) [85].
In such a fluctuating and extreme environment, genetic analysis of alvinellacin has given evidence of
an adaptive diversification of the molecular chaperone of the AMP, but not of the AMP itself, as the
result of the gain of a vital and highly conserved epsilon proteobacteria ectosymbiosis in the face
of the joint thermal and sulfide fluctuations of the vent habitat [47]. Biochemical characterization
of alvinellacin has revealed that its primary structure is composed of 22 amino acid residues and
stabilized by two disulfide bonds [48,86]. However, it is worth noting that BRICHOS-AMP homologs
have been also described in other alvinellid and terebellid worms that do not always exhibit bacterial
epibioses, and thus represent a very ‘old’ family of AMPs in annelids.

As mentioned above, annelid AMPs with BRICHOS are characterized by a short amino-acid
sequence, a cationic net charge, a hydrophobic region, a β-sheet fold, and the formation of disulfide
bonds between cysteine residues, increasing the rigidity of their open-ended cyclic structures
(Table 4) [87–89]. Different specific software can easily determine all these structural characteristics.
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The Innovagen Pepcalc.com server (Innovagen AB, SE-22370 Lund, SWEDEN; https://pepcalc.com/)
was used to calculate the net charge at neutral pH, and Peptide2.0 server (Peptide 2.0 Inc., Chantilly,
VA; https://peptide2.com/) to evaluate the peptide hydrophobicity. The positive charge (due to arginine
residues) and the hydrophobicity (from valine, leucine, alanine, tryptophan, isoleucine, phenylalanine,
and tyrosine) contribute to the amphipathic nature of the peptide. In aqueous solution, they adopt a
β-hairpin conformation, formed by two twisted antiparallel β-strands, stabilized by intra-backbone
hydrogen bonds and one or two disulfide bonds between cysteine residues (Figure 7) [48,88–90].
This motif was found in other AMPs, like protegrins, gomesin, and tachyplesins, but not in combination
with a large residue ring structure (showed in Figure 7) [91–93].
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positive bacteria (B. megaterium and S. aureus) and Gram-negative bacteria (E. coli, V. diabolicus, 
Pseudomonas sp., V. MPV19). Interestingly, in contrast to the majority of known AMPs, the 
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Similarly, low temperature conditions (+4 °C) do not impede arenicin-1 antimicrobial inhibition on 
E. coli and P. mirabilis [89]. 

The peptides kill a number of bacterial strains within minutes by membrane permeabilization, 
membrane detachment, and release of cytoplasm [14,89]. The mechanism of action of arenicins is still 
under investigation, and recent studies propose a “toroidal-pore” model, including monomeric or 
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Notably, the structural properties of BRICHOS-AMPs are linked to their membranolytic activity,
exhibiting a broad spectrum of activities against Gram-positive, Gram-negative bacterial, and
fungal pathogens (Table 3) [94]. Arenicin isoforms display potent antibacterial activity against
Gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis,
Planococcus citreus, Bacillus subtilis, Bacillus megaterium, Micrococcus luteus), Gram-negative bacteria
(E. coli, Klebsiella pneumoniae, Salmonella enterica, Salmonella typhimurium, Pseudomonas aeruginosa,
Proteus mirabilis, Vibrio alginolyticus, Listonella anguillarum, Agrobacterium tumefaciens), and also
antifungal activity (Candida albicans, Fusarium solani) [14,28,88–90,95–100]. Alvinellacin is active
against Gram-positive bacteria (B. megaterium and S. aureus) and Gram-negative bacteria (E. coli,
V. diabolicus, Pseudomonas sp., V. MPV19). Interestingly, in contrast to the majority of known AMPs,
the antimicrobial activity of arenicin-family members is preserved in the presence of salt [14,48,89].
Similarly, low temperature conditions (+4 ◦C) do not impede arenicin-1 antimicrobial inhibition on
E. coli and P. mirabilis [89].

The peptides kill a number of bacterial strains within minutes by membrane permeabilization,
membrane detachment, and release of cytoplasm [14,89]. The mechanism of action of arenicins is still
under investigation, and recent studies propose a “toroidal-pore” model, including monomeric or
dimeric peptide organization [98,101,102]. The AMP interaction with the anionic phospholipidic bilayer
of bacterial membranes is promoted by the high abundance of hydrophobic and positively-charged
residues [98,102,103]. The binding to the membranes leads to conformational changes of the peptide
molecule [28,104]. Two N-terminal β-strands of peptides associate to form a dimer mediating pore
formation [28,101,104]. In yeast, arenicin-1 may act indirectly, inducing apoptosis via intracellular
accumulation of reactive oxygen species, and directly damages mitochondria and DNA in nuclei [105].

Except for alvinellacin, which is not hemolytic or cytotoxic to mammalian cells, arenicins are
cytotoxic to human cell lines and cause hemolysis of human red blood cells. Although this precludes
their development as candidate antimicrobials, artificial modified analogs were designed based on
their structure, in order to decrease their adverse effects and to enhance the antimicrobial properties.
Novel derivatives named NZ17074, N2, and N6 were designed and synthesized as linear or with
more disulfide bonds by amino acid substitution [90,97,106,107]. By showing a higher antimicrobial
activity and a lower cytotoxicity, these latter derivatives were more powerful than the parent molecule.

https://pepcalc.com/
https://peptide2.com/
www.pymol.org
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Therefore, these positive results suggest these AMPs as potential candidates for antibacterial drug
development [81,107,108].

Arenicin-1 and 2 and alvinellacin transcripts are expressed constitutively in coelomocytes, in the
body wall, the foregut, and midgut, suggesting a peptide’s involvement in both systemic and epithelial
branches of immunity [14,83,109]. These AMPs are also present in a major part of the nervous system,
which suggests a possible involvement in the defense and the regeneration of the nerve cord as
demonstrated for the cysteine rich AMPs of the leeches (see below) [43,89,109]. Data given also
evidences that alvinellacin shapes and controls the specific epibiotic microflora that allows it to thrive
in the hydrothermal habitat [48].

Recently, nicomicin-1 and -2 were identified in the artic polychaeta Nicomache minor [110].
This worm lives in the cold water, inhabiting hard tubes attached to stones [111]. Nicomicins consist of
33 residues (Table 1), containing BRICHOS domain in the sequences of their prepropeptide. They are
characterized by many hydrophobic amino acids (51%) and a disulfide bond (Cys24 – Cys29) [110].
While Nicomicin-2 has no effect on bacteria, Nicomicin-1 exerts strong antimicrobial activity towards
Gram-positive bacteria by damaging their membranes; the presence of salt impedes its activity [110].
Conversely, the AMP 3D structure is different from alvinellacin and arenicin and is organized into two
independent regions with an α-helix at the N-terminal moiety and a six-residue loop stabilized by the
disulfide bridge at the C-terminus [110].

2.3. Mixed α-helix/β-sheet Peptides

2.3.1. Mixed α-helix/β-sheet Peptides in Nematodes

The ABF Family

ABFs (antibacterial factors) are defensin-like AMPs characterized in nematodes only, first in
Ascaris suum (seven As-ABFs) and then in Caenorhabditis elegans (five Ce-ABFs), in Ancylostoma duodenale
(six Ad-ABFs), and one Cbr-ABF in C. briggsae [35,112,113]. This family of peptides appears to be
widely distributed in nematodes (86 peptides from 25 species) with different lifestyles and habitats.
A. suum and A. duodenale are hematophageous parasitic, living in the small intestine of mammalian
hosts; C. elegans and C. briggsae are not parasitic and inhabit compost and garden soil. Despite their
similarities with macins, they have not been found in annelids. Nematode defensins are cationic and
cysteine rich peptides, with formation of disulfide bonds (Figure 8) [114–116].
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Although the structure for As-ABF-α is the only one having been experimentally determined
(Figure 9), the ABFs’ structural motif is characterized by an α-helix and two β-sheets stabilized by
three disulfide bonds (CS-αβ), the fourth bond contributes to the firmness of the open ended cyclic
molecule [4,64].



Mar. Drugs 2019, 17, 512 11 of 22

Mar. Drugs 2019, 17, 512 13 of 23 

 

Although the structure for As-ABF-α is the only one having been experimentally determined 
(Figure 9), the ABFs’ structural motif is characterized by an α-helix and two β-sheets stabilized by 
three disulfide bonds (CS-αβ), the fourth bond contributes to the firmness of the open ended cyclic 
molecule [4,64]. 

 

Figure 9. Three-dimensional structure of the As-ABF-alpha (PDB ID: 2D56): In green, antiparallel β-
sheets; in purple, α-helix; and in yellow, disulfide bridges [35]. Picture generated using PyMOL (TM) 
2.3.2 software (www.pymol.org). 

The antibacterial activity has been screened for As-ABF-alpha and Ce-ABF2 only, and both 
exhibit higher antimicrobial activity against Gram-positive bacteria (through pore formation) than 
against Gram-negative bacteria and yeast (Table 3); the presence of salt inhibits their bactericidal 
activity [35,112–114,117]. Their expression increases upon bacterial challenge [73,116]. As-ABFs have 
been detected mainly in the body wall and in other tissues, probably with diversified physiological 
roles [116]. Conversely, Ce-ABF1 and Ce-ABF2 are mainly produced in the pharynx of C. elegans, i.e., 
the site where live bacteria accumulate after their ingestion [113]. 

2.3.2. Mixed α-helix/β-sheet Peptides in Annelids 

Macin Family 

Macins are cationic cysteine-rich AMPs. Members of this family of peptides have been first 
described in leeches (Theromyzon tessulatum and Hirudo medicinalis) [43,44], and later in Hydra vulgaris 
[43,118] and in the mollusks Hyriopsis cumingii [80] and Mytilus galloprovincialis [119]. Both leeches 
belong to the “Clitellata” class: T. tessulatum is a shallow water rhynchobdellid leech, ectoparasite of 
aquatic birds [120]; H. medicinalis, a gnathobdellid leech, is an ectoparasite of mammals which lives 
in stagnant freshwater and streams [121]. Tt-theromacin (Tt-T) in T. tessulatum [44], Hm-neuromacin 
(Hm-N) and Hm-theromacin (Hm-T) in H. medicinalis [43], have several functions that includes 
bacterial killing, symbiostasis in the gut, immune defense, and regeneration of the damaged nerve 
cord. Their primary structure is highly conserved with the presence of a signal peptide (except for 
Hm-Theromacin), four disulfide bridges [122], and a fifth intramolecular disulfide bond (C31:C73) in 
theromacins (Figure 10) [118].  

 
Figure 10. Sequence alignment of Macin family members. Signal peptide in the frame; in red bold 
type, cysteine residues involved in disulfide bonds; * conserved amino acids. 

Figure 9. Three-dimensional structure of the As-ABF-alpha (PDB ID: 2D56): In green, antiparallel
β-sheets; in purple, α-helix; and in yellow, disulfide bridges [35]. Picture generated using PyMOL (TM)
2.3.2 software (www.pymol.org).

The antibacterial activity has been screened for As-ABF-alpha and Ce-ABF2 only, and both
exhibit higher antimicrobial activity against Gram-positive bacteria (through pore formation) than
against Gram-negative bacteria and yeast (Table 3); the presence of salt inhibits their bactericidal
activity [35,112–114,117]. Their expression increases upon bacterial challenge [73,116]. As-ABFs have
been detected mainly in the body wall and in other tissues, probably with diversified physiological
roles [116]. Conversely, Ce-ABF1 and Ce-ABF2 are mainly produced in the pharynx of C. elegans, i.e.,
the site where live bacteria accumulate after their ingestion [113].

2.3.2. Mixed α-helix/β-sheet Peptides in Annelids

Macin Family

Macins are cationic cysteine-rich AMPs. Members of this family of peptides have been
first described in leeches (Theromyzon tessulatum and Hirudo medicinalis) [43,44], and later in
Hydra vulgaris [43,118] and in the mollusks Hyriopsis cumingii [80] and Mytilus galloprovincialis [119].
Both leeches belong to the “Clitellata” class: T. tessulatum is a shallow water rhynchobdellid leech,
ectoparasite of aquatic birds [120]; H. medicinalis, a gnathobdellid leech, is an ectoparasite of mammals
which lives in stagnant freshwater and streams [121]. Tt-theromacin (Tt-T) in T. tessulatum [44],
Hm-neuromacin (Hm-N) and Hm-theromacin (Hm-T) in H. medicinalis [43], have several functions that
includes bacterial killing, symbiostasis in the gut, immune defense, and regeneration of the damaged
nerve cord. Their primary structure is highly conserved with the presence of a signal peptide (except
for Hm-Theromacin), four disulfide bridges [122], and a fifth intramolecular disulfide bond (C31:C73)
in theromacins (Figure 10) [118].
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Macin peptides represent rather long and complex peptides of more than 60 residues. The tertiary
structure of macin family members is organized in a knottin-fold according to the arrangement of
cysteine bonds, and the peptides’ molecular surfaces are divided into two hydrophobic hemispheres
(due to the band-like distribution of the positive charges) [118,122]. Figure 11 shows the open-ended
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cyclic structure of theromacin. The conserved structural features in the macin family are an additional
α-helix in N-terminal position and two long flexible loops, distinguishing them from all other peptides
of the scorpion-toxin like superfamily in which the macin family belongs [118].
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Theromacin and neuromacin have been evidenced to display antimicrobial activity against
Gram-positive bacteria (B. megaterium and M. luteus) [6] and low antibacterial activity
against Gram-negative proteobacteria (E. coli) [44]; neuromacin being also active against
Micrococcus nishinomiyaensis (Table 3) [43]. The activities are impeded with increasing salt
concentrations [6]. The MOA of the family (barnacle model) includes the permeabilization of
the membrane of Gram-positive bacteria, but also the pore formation as observed for neuromacin [6].
Thanks to their structural double-amphipathic character (two hydrophobic hemispheres sandwiched by
a belt of positive charges), initially macins promote aggregation of bacteria, and after, they permeabilize
the bacterial membrane [6,118].

In addition to antibacterial activity, both neuromacin and theromacin exert nerve-cord regeneration
activity [6,43]. In H. medicinalis, theromacin is released in the blood surrounding the nervous system,
and neuromacin is produced by nerve cells and accumulates at the wounded site of the central nervous
system [123], whereas Tt-theromacin is expressed in large fat cells and released immediately into the
coelomic fluid following infections or damages of the central nervous system [6,44].

2.4. Peptides Enriched with One or Two Specific Amino Acids

2.4.1. Peptides Enriched with One or Two Specific Amino Acids in Nematodes

Neuropeptide-Like Peptides and Caenacins

Neuropeptide-like peptides (nlps) and caenacins (CNCs) are basic peptides which are enriched
in glycine and aromatic amino acids residues [40,124,125]. They are induced in the hypodermis by
infection (i.e., Drechmeria coniospora) or wounding in C. elegans and other nematodes species, playing
diverse roles in nervous system functioning [125]. These two AMP groups represent 111 genes already
known. In Figures 12 and 13, some examples of nlp and CNC families are listed, showing YGGWG
and YGGYG motifs which are likely to typify this group of AMPs [126].
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Figure 13. Caenacin members’ sequence alignment: YGGYG motifs in green; * conserved amino acids.

Interestingly, the expression of nlp and CNC genes in C. elegans is downregulated upon challenge
with the majority of tested bacteria and upregulated in the case of fungal infections [73]. To date,
there have been no direct tests of the antimicrobial/antifungal activity for these peptides and the
MOA has not yet been described. Recently, nlp-31 exhibited activity towards Burkholderia pseudomallei
(a Gram-negative bacterium, resistant to a wide range of antimicrobials), thereby binding to DNA and
interfering with bacterial viability without any membrane disruption activity [127].

2.4.2. Peptides enriched with one or two specific amino acids in annelids

Lumbricin Family

Lumbricins are proline-rich AMPs characterized in oligochaete earthworms Lumbricus rubellus
(lumbricin-1), Pheretima tschiliensis (PP-1), P. guillelmi (lumbricin-PG), and Eiseinia andrei (Lumbr and
LuRP), and in the leech H. medicinalis (Hm-lumbricin) [42,43,128–130], but also found in polychaetes
such as the Pompeii worm A. pompejana (AT & DJ, pers. obs.) and leeches [88].

Their amino acid sequences include numerous prolines and aromatic amino-acid residues
(phenylalanine, tyrosine or tryptophan); only lumbricin-1 and lumbricin-PG exhibit a signal peptide
sequence (Figure 14).
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Lumbricin-1 exhibits antibacterial activity towards a broad spectrum of Gram-positive and
Gram-negative bacteria and fungi (Table 3) [42,43,128–130], but their MOA is still unknown. PP-1 is
synthesized in the mucus of the epidermis; the two lumbricins from E. andrei have been detected in the
intestine and in other tissues (body wall, gut, ovary, etc.) [43,128,131,132]. Interestingly, Hm-lumbricin
gene expression is rapidly enhanced by bacterial challenge [43], whereas Lumbr and LuRP are slowly
induced (after 48 h) following the infection [129]. By contrast, lumbricin-1 (present only in adult
worms) is not inducible when the animal is subjected to a bacterial challenge [42]. Hm-lumbricin exerts
neuroregenerative properties in leeches, as observed for neuromacin [43]. Nowadays, the tertiary
structures of lumbricins, nlps, and CNCs have not been solved [114].
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Table 3. Antimicrobial activity spectrum of worm AMPs. The values are expressed in µM: MIC (Minimal Inhibitory Concentration) in black, MBC. (Minimal
Bactericidal Concentration) in red, and B.C.50 (50% Bactericidal Concentration) in green.

Microorganisms CECROPINS CAENOPORES
HEDISTIN

BRICHOS FAMILY ABFS MACINS LUMBRICINS
PERINERINP1 P2 P3 P4 SSP1 SSP5 SSP12 arenicin1 arenicin2 alvinellacin nicomicin1 AS-α CE-2 Hm-N Tt-T Hm-T PG 1

G
R
A
M
N
E
G
A
T
I
V
E

Escherichia coli 0.3–0.5 30 9 20 0.1 0.8–1.6 4 4 0.012–0.024 2–16 50 25 25 20 12 12.5–25
Pseudomonas aeruginosa 0.4–0.5 20 20 20 2 32 3.1–9.2

Pseudomonas sp. 0.001–0.003
Salmonella enterica 0.6

Salmonella typhimurium 0.4–0.5 20 8 8
Proteus mirabilis 0.6
Proteus vulgaris 10

Klebsiella pneumoniae 0.5 2–4 70 0.9
Vibrio alginolyticus 0.4

Vibrio diabolicus 0.048–0.096
Vibrio MPV19 0.012–0.024

Listonella anguillarum 3.1
Bdellovibrio

bacteriovorus 0.5 0.06

Agrobacterium
tumefaciens 5 10 0.05

Serratia sp. 2.5 16

G
R
A
M
P
O
S
I
T
I
V
E

Micrococcus luteus 8 30 8 8 0.4–0.8 2.6 0.125 0.8 0.165–0.33 25–50
Micrococcus

nishinomiyaensis 0.4–0.8 1.95–3.8

Staphylococcus aureus 22.2 8 3 3 3–6 2–8 0.048–0.096 2 0.6 6.25 100 5 16
Staphylococcus

epidermidis 4–8

Streptococcus mutans 30
Bacillus megaterium 0.1 0.05 0.275 2.6 0.012—0.024 0.20 0.39 2.5-5

Bacillus subtilis 2 20 10 20 0.31 0.062 1.2 12
Bacillus thuringiensis 10

Kocuria varians 0.5 0.008
Enterococcus faecium 3.4–4 12.5
Enterococcus faecalis 9.4
Planococcus citreus 0.03

Listeria monocytogenes 4.1 0.6 0.6–0.8

Y
E
A
S
T
S

Candida albicans 200 200 200 200 4.5–9 4.5–9 10 16
Candida krusei 10 0.3

Candida parapsilosis 4.5
Trichosporon beigelii 4.5
Trichophyton rubrum 9

Malassezia furfur 9
Fusarium solani 50

Saccharomyces cerevisiae 300 300 300 300 12
Pichia anomala 30 0.08

Paecilomyces heliothis 12.5–25
Kluyveromyces
thermotolerans 3 0.3

REFERENCES [62,67] [62] [62] [62] [72] [72] [75] [50] [14,87,98–100] [88] [48] [110] [35,117] [113] [6] [6,44] [43] [130] [42] [49]
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Table 4. Amino acidic sequences hydrophobicity and net charge of BRICHOS-AMPs. In bold type,
cysteine residues involved in disulfide bridges.

AMP Name Amino Acid Sequence Hydrophobicity Net Charge At pH 7

Arenicin-1 RWCVYAYVRVRGVLVRYRRCW 42% +6
Arenicin-2 RWCVYAYVRIRGVLVRYRRCW 42% +6
Arenicin-3 GFCWYVCVYRNGVRVCYRRCN 28% +4

Alvinellacin RGCYTRCWKVGRNGRVCMRVCT 22% +6
Nicomicin-1 GFWSSVWDGAKNVGTAIIKNAKVCVYAVCVSHK 45% +3
Nicomicin-2 GFWSSVWDGAKNVGTAIIRNAKVCVYAVCVSHK 45% +3

2.5. Peptides Derived from Larger Molecules in Annelids

2.5.1. Perinerin

Perinerin is a cationic, hydrophobic, and linear peptide, isolated and characterized from the Asian
marine clamworm Perinereis aibuhitensis (Grube, 1878) [49,133]. This annelid is a marine polychaete,
living in the sediment of estuaries [134]. Perinerin consists of 51 amino-acid residues (primary structure:
FNKLKQGSSKRTCAKCFRKIMPSVHELDERRRGANRWAAGFRKCVSSICRY), with a high proportion
of arginine and four cysteine residues possibly involved in the formation of two disulfide bonds [49].
Despite the presence of cysteine residues and disulfide bonds, the Perinerin sequence does not show
any similarities with the previously described AMPs in annelids, and its average sequence identity to
other cysteine-rich AMPs is less than 30% [135]. It exhibits a broad range of antimicrobial activities
(antifungal, bactericidal against Gram-negative and Gram-positive bacteria) without any observed
microbial resistance (Table 3) [49]. The proposed MOA is pore-forming activity and the bactericidal
action against the Gram-positive bacteria B. megaterium is very fast (less than 3 minutes) [79]. Perinerin
purification is obtained from unchallenged individuals, and suggests that the peptide is constitutively
expressed [49]. Until now, no studies describing the three-dimensional structure of Perinerin have
been performed.

2.5.2. Ms-Hemerycin

Ms-Hemerycin is an AMP from the polychaete Marphysa sanguinea, a marine lugworm that
inhabits mudflats [51]. Its amino-acid sequence consists of 14 amino acids (Ac-SVEIPKPFKWNDSF)
blocked by a N-terminal acetylation for its stability. Ms-Hemerycin is derived from the split of the
N-terminus of the well-known respiratory pigment hemerythrin found in several marine invertebrates.
This peptide exhibits potent activity against Gram-negative and Gram-positive bacteria (Table 3).
Ms-Hemerycin has been detected constitutively in all examined tissues, with higher concentration in
brain and muscle. The secondary structure might be unordered, containing a partial α-helical region.
From such an unordered structure, it can be predicted that the MOA should be very different from the
other AMPs [30,51].

3. Conclusions and Perspectives

Among biological models, marine worms are particularly attractive for searching and studying
the adaptation/evolution of AMPs to environmental conditions despite their high level of divergence.
Compared to the terrestrial environment, the sea has remained virtually unexplored for its ability to
yield pharmacological metabolites. In the last decades, research has expanded from lands to oceans in
order to find new drug candidates. Because the oceans occupy almost 70% of Earth’s surface, they offer
a vast potential for biological and chemical diversities. Even more interesting are marine worms living
in extreme habitats. The peculiar thermochemical and biotic pressures (and notably, the abundance of
Gram-negative bacteria where most actual MDR bacteria belong to) that marine worms have to face
in hostile environments represent a natural laboratory to select AMPs able to be more acid-resistant,
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thermostable, salt-tolerant, and active against most bacterial strains. Extremophile worms constitute
interesting models to search and study novel drugs [136].

Moreover, the study of AMPs produced by extremophile annelids offers the perspective to
add an initial piece in the complex relationship between the external immunity of the host and its
ectosymbionts recruitment and growth control [48,137,138].
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