K. M. O'connell, J. T. Hodgkinson, H. F. Sore, M. Welch, G. P. Salmond et al., Combating Multidrug-Resistant Bacteria: Current Strategies for the Discovery of Novel Antibacterials, Angewandte Chemie International Edition, vol.52, issue.41, pp.10706-10733, 2013.

M. Pasupuleti, A. Schmidtchen, and M. Malmsten, Antimicrobial peptides: key components of the innate immune system, Critical Reviews in Biotechnology, vol.32, issue.2, pp.143-171, 2011.

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, issue.6870, pp.389-395, 2002.

P. Bulet, R. Stocklin, and L. Menin, Anti-microbial peptides: from invertebrates to vertebrates, Immunological Reviews, vol.198, issue.1, pp.169-184, 2004.

H. Jenssen, P. Hamill, and R. E. Hancock, Peptide Antimicrobial Agents, Clinical Microbiology Reviews, vol.19, issue.3, pp.491-511, 2006.

S. Jung, F. D. Sönnichsen, C. W. Hung, A. Tholey, C. Boidin-wichlacz et al., Macin Family of Antimicrobial Proteins Combines Antimicrobial and Nerve Repair Activities, Journal of Biological Chemistry, vol.287, issue.17, pp.14246-14258, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00731468

J. D. Steckbeck, B. Deslouches, and R. C. Montelaro, Antimicrobial peptides: new drugs for bad bugs?, Expert Opinion on Biological Therapy, vol.14, issue.1, pp.11-14, 2013.

H. G. Boman, Peptide Antibiotics and their Role in Innate Immunity, Annual Review of Immunology, vol.13, issue.1, pp.61-92, 1995.

K. A. Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nature Reviews Microbiology, vol.3, issue.3, pp.238-250, 2005.

J. P. Da-costa, M. Cova, R. Ferreira, and R. Vitorino, Antimicrobial peptides: an alternative for innovative medicines?, Applied Microbiology and Biotechnology, vol.99, issue.5, pp.2023-2040, 2015.

A. Marr, W. Gooderham, and R. Hancock, Antibacterial peptides for therapeutic use: obstacles and realistic outlook, Current Opinion in Pharmacology, vol.6, issue.5, pp.468-472, 2006.

C. Sherlina-daphny, M. Arputha-bibiana, R. Vengatesan, P. Selvamani, and S. Latha, Antimicrobial Peptides-A milestone for developing antibiotics against drug resistant infectious pathogens, J. Pharm. Sci. Res, vol.7, pp.226-230, 2015.

E. Macke, A. Tasiemski, F. Massol, M. Callens, and E. Decaestecker, Life history and eco-evolutionary dynamics in light of the gut microbiota, Oikos, vol.126, issue.4, pp.508-531, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01418013

T. V. Ovchinnikova, G. M. Aleshina, S. V. Balandin, A. D. Krasnosdembskaya, M. L. Markelov et al., Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaetaArenicola marina, FEBS Letters, vol.577, issue.1-2, pp.209-214, 2004.

A. Tasiemski, F. Massol, V. Cuvillier-hot, C. Boidin-wichlacz, E. Roger et al., Reciprocal immune benefit based on complementary production of antibiotics by the leech Hirudo verbana and its gut symbiont Aeromonas veronii, Scientific Reports, vol.5, issue.1, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01239548

. Bruno, . Maresca, . Canaan, . Cavalier, . Mabrouk et al., Worms? Antimicrobial Peptides, Marine Drugs, vol.17, issue.9, p.512, 2019.

K. R. Amato, Incorporating the gut microbiota into models of human and non-human primate ecology and evolution, American Journal of Physical Anthropology, vol.159, pp.196-215, 2016.

R. Sousa, S. Dias, and C. Antunes, Subtidal macrobenthic structure in the lower lima estuary, NW of Iberian Peninsula, Ann. Zool. Fennici, vol.44, pp.303-313, 2007.

C. Zhao, L. Liaw, I. H. Lee, and R. I. Lehrer, cDNA cloning of three cecropin-like antimicrobial peptides (Styelins) from the tunicate, Styela clava, FEBS Letters, vol.412, issue.1, pp.144-148, 1997.

M. Andersson, A. Boman, and H. G. Boman, Ascaris nematodes from pig and human make three anti-bacterial peptides: Isolation of cecropin P1 and two ASABF peptides, Cell. Mol. Life Sci, vol.60, pp.599-606, 2003.

V. Meyer and S. Jung, Antifungal Peptides of the AFP Family Revisited: Are These Cannibal Toxins? Microorganisms, vol.6, 2018.

G. Wang, X. Li, and Z. Wang, APD3: the antimicrobial peptide database as a tool for research and education, Nucleic Acids Research, vol.44, issue.D1, pp.D1087-D1093, 2015.

M. R. Yeaman and N. Y. Yount, Unifying themes in host defence effector polypeptides, Nature Reviews Microbiology, vol.5, issue.9, pp.727-740, 2007.

A. Peschel and H. G. Sahl, The co-evolution of host cationic antimicrobial peptides and microbial resistance, Nature Reviews Microbiology, vol.4, issue.7, pp.529-536, 2006.

N. Malanovic and K. Lohner, Antimicrobial Peptides Targeting Gram-Positive Bacteria, Pharmaceuticals, vol.9, issue.3, p.59, 2016.

J. L. Fox, Antimicrobial peptides stage a comeback, Nature Biotechnology, vol.31, issue.5, pp.379-382, 2013.

M. Salzet, A. Tasiemski, and E. Cooper, Innate Immunity in Lophotrochozoans: The Annelids, Current Pharmaceutical Design, vol.12, issue.24, pp.3043-3050, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00086941

A. Bogaerts, I. Beets, L. Temmerman, L. Schoofs, and P. Verleyen, Proteome changes of Caenorhabditis elegans upon a Staphylococcus aureus infection, Biology Direct, vol.5, issue.1, p.11, 2010.

M. N. Berlov and A. L. Maltseva, The Effect of Microplastic on the Uptake of Chemicals by the Lugworm Arenicola marina (L.) under Environmentally Relevant Exposure Conditions, Invertebr. Surviv. J, vol.13, pp.247-256

D. E. Tarr, Distribution and characteristics of ABFs, cecropins, nemapores, and lysozymes in nematodes, Developmental & Comparative Immunology, vol.36, issue.3, pp.502-520, 2012.

M. Cyrino, L. Coutinho, V. L. Teixeira, C. Simone, and G. Santos, A Review of "Polychaeta" Chemicals and their Possible Ecological Role, J. Chem. Ecol, vol.44, pp.1-23, 2017.

J. Y. Lee, A. Boman, C. X. Sun, M. Andersson, H. Jornvall et al., Antibacterial peptides from pig intestine: isolation of a mammalian cecropin., Proceedings of the National Academy of Sciences, vol.86, issue.23, pp.9159-9162, 1989.

D. Hultmark, H. Steiner, T. Rasmuson, and H. G. Boman, Insect Immunity. Purification and Properties of Three Inducible Bactericidal Proteins from Hemolymph of Immunized Pupae of Hyalophora cecropia, European Journal of Biochemistry, vol.106, issue.1, pp.7-16, 2005.

T. D. Lockey and D. D. Ourth, Formation of Pores in Escherichia coli Cell Membranes by a Cecropin Isolated from Hemolymph of Heliothis virescens Larvae, European Journal of Biochemistry, vol.236, issue.1, pp.263-271, 1996.

K. Pütsep, S. Normark, and H. G. Boman, The origin of cecropins; implications from synthetic peptides derived from ribosomal protein L1, FEBS Letters, vol.451, issue.3, pp.249-252, 1999.

Y. Kato and S. Komatsu, ASABF, a Novel Cysteine-rich Antibacterial Peptide Isolated from the NematodeAscaris suum, Journal of Biological Chemistry, vol.271, issue.48, pp.30493-30498, 1996.

H. Zhang and Y. Kato, Common structural properties specifically found in the CS??-type antimicrobial peptides in nematodes and mollusks: evidence for the same evolutionary origin?, Developmental & Comparative Immunology, vol.27, issue.6-7, pp.499-503, 2003.

O. Froy, Convergent evolution of invertebrate defensins and nematode antibacterial factors, Trends in Microbiology, vol.13, issue.7, pp.314-319, 2005.

L. Bányai and L. Patthy, Amoebapore homologs of Caenorhabditis elegans, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1429, issue.1, pp.259-264, 1998.

M. Leippe, Antimicrobial and cytolytic polypeptides of amoeboid protozoa - effector molecules of primitive phagocytes, Developmental & Comparative Immunology, vol.23, issue.4-5, pp.267-279, 1999.

. Bruno, . Maresca, . Canaan, . Cavalier, . Mabrouk et al., Worms? Antimicrobial Peptides, Marine Drugs, vol.17, issue.9, p.512, 2019.

C. Couillault, N. Pujol, J. Reboul, L. Sabatier, J. F. Guichou et al., TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM, Nature Immunology, vol.5, issue.5, pp.488-494, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02108883

S. V. Sperstad, T. Haug, H. M. Blencke, O. B. Styrvold, C. Li et al., Antimicrobial peptides from marine invertebrates: Challenges and perspectives in marine antimicrobial peptide discovery, Biotechnology Advances, vol.29, issue.5, pp.519-530, 2011.

J. H. Cho, C. B. Park, Y. G. Yoon, and S. C. Kim, Lumbricin I, a novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1408, issue.1, pp.67-76, 1998.

D. Schikorski, V. Cuvillier-hot, M. Leippe, C. Boidin-wichlacz, C. Slomianny et al., Microbial Challenge Promotes the Regenerative Process of the Injured Central Nervous System of the Medicinal Leech by Inducing the Synthesis of Antimicrobial Peptides in Neurons and Microglia, The Journal of Immunology, vol.181, issue.2, pp.1083-1095, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00350100

A. Tasiemski, F. Vandenbulcke, G. Mitta, J. Lemoine, C. Lefebvre et al., Molecular Characterization of Two Novel Antibacterial Peptides Inducible upon Bacterial Challenge in an Annelid, the LeechTheromyzon tessulatum, Journal of Biological Chemistry, vol.279, issue.30, pp.30973-30982, 2004.

L. Sánchez-pulido, D. Devos, and A. Valencia, BRICHOS: a conserved domain in proteins associated with dementia, respiratory distress and cancer, Trends in Biochemical Sciences, vol.27, issue.7, pp.329-332, 2002.

S. D. Knight, J. Presto, S. Linse, and J. Johansson, The BRICHOS Domain, Amyloid Fibril Formation, and Their Relationship, Biochemistry, vol.52, issue.43, pp.7523-7531, 2013.

C. Papot, F. Massol, D. Jollivet, and A. Tasiemski, Author Correction: Antagonistic evolution of an antibiotic and its molecular chaperone: how to maintain a vital ectosymbiosis in a highly fluctuating habitat, Scientific Reports, vol.7, issue.1, p.389, 2017.

A. Tasiemski, S. Jung, C. Boidin-wichlacz, D. Jollivet, V. Cuvillier-hot et al., Characterization and Function of the First Antibiotic Isolated from a Vent Organism: The Extremophile Metazoan Alvinella pompejana, PLoS ONE, vol.9, issue.4, p.e95737, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101011

W. Pan, X. Liu, F. Ge, J. Han, and T. Zheng, Perinerin, a Novel Antimicrobial Peptide Purified from the Clamworm Perinereis aibuhitensis Grube and Its Partial Characterization, Journal of Biochemistry, vol.135, issue.3, pp.297-304, 2004.

A. Tasiemski, D. Schikorski, F. Le-marrec-croq, C. Pontoire-van-camp, C. Boidin-wichlacz et al., Hedistin: A novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor, Developmental & Comparative Immunology, vol.31, issue.8, pp.749-762, 2007.

J. K. Seo, B. H. Nam, H. J. Go, M. Jeong, K. Y. Lee et al., Hemerythrin-related antimicrobial peptide, msHemerycin, purified from the body of the Lugworm, Marphysa sanguinea, Fish & Shellfish Immunology, vol.57, pp.49-59, 2016.

L. Yang, T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang, Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores, Biophysical Journal, vol.81, issue.3, pp.1475-1485, 2001.

A. S. Ladokhin and S. H. White, ?Detergent-like? permeabilization of anionic lipid vesicles by melittin, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1514, issue.2, pp.253-260, 2001.

R. F. Epand, L. Maloy, A. Ramamoorthy, and R. M. Epand, Amphipathic Helical Cationic Antimicrobial Peptides Promote Rapid Formation of Crystalline States in the Presence of Phosphatidylglycerol: Lipid Clustering in Anionic Membranes, Biophysical Journal, vol.98, issue.11, pp.2564-2573, 2010.

P. Nicolas, Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides, FEBS Journal, vol.276, issue.22, pp.6483-6496, 2009.

A. Giangaspero, L. Sandri, and A. Tossi, Amphipathic ? helical antimicrobial peptides., European Journal of Biochemistry, vol.268, issue.21, pp.5589-5600, 2001.

J. S. Powers and R. E. Hancock, The relationship between peptide structure and antibacterial activity, Peptides, vol.24, issue.11, pp.1681-1691, 2003.

L. T. Nguyen, E. F. Haney, and H. J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action, Trends in Biotechnology, vol.29, issue.9, pp.464-472, 2011.

K. V. Reddy, R. D. Yedery, and C. Aranha, Antimicrobial peptides: premises and promises, International Journal of Antimicrobial Agents, vol.24, issue.6, pp.536-547, 2004.

, servicio-informativo-year-17-no168-mar-22-1993-19-pp, Mar. Drugs, vol.17, pp.512-531

P. Kylsten, C. Samakovlis, and D. Hultmark, The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection., The EMBO Journal, vol.9, issue.1, pp.217-224, 1990.

Y. Liang, J. X. Wang, X. F. Zhao, X. J. Du, and J. F. Xue, Molecular cloning and characterization of cecropin from the housefly (Musca domestica), and its expression in Escherichia coli?, Developmental & Comparative Immunology, vol.30, issue.3, pp.249-257, 2006.

A. Pillai, S. Ueno, H. Zhang, J. M. Lee, and Y. Kato, Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum, Biochemical Journal, vol.390, issue.1, pp.207-214, 2005.

M. H. Baek, M. Kamiya, T. Kushibiki, T. Nakazumi, S. Tomisawa et al., Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy, Journal of Peptide Science, vol.22, issue.4, pp.214-221, 2016.

A. Tassanakajon, K. Somboonwiwat, and P. Amparyup, Sequence diversity and evolution of antimicrobial peptides in invertebrates, Developmental & Comparative Immunology, vol.48, issue.2, pp.324-341, 2015.

D. P. Satchell, T. Sheynis, Y. Shirafuji, S. Kolusheva, A. J. Ouellette et al., Interactions of Mouse Paneth Cell ?-Defensins and ?-Defensin Precursors with Membranes, Journal of Biological Chemistry, vol.278, issue.16, pp.13838-13846, 2003.

J. Andrä, O. Berninghausen, and M. Leippe, Cecropins, antibacterial peptides from insects and mammals, are potently fungicidal against Candida albicans, Medical Microbiology and Immunology, vol.189, issue.3, pp.169-173, 2001.

I. H. Lee, Y. N. Cho, and R. I. Lehrer, Effects of pH and salinity on the antimicrobial properties of clavanins., Infection and immunity, vol.65, issue.7, pp.2898-2903, 1997.

P. P. Chiou, M. J. Chen, C. Lin, J. Khoo, J. Larson et al., Production of Homozygous Transgenic Rainbow Trout with Enhanced Disease Resistance, Marine Biotechnology, vol.16, issue.3, pp.299-308, 2013.

Y. Han and T. T. Chen, A pathway-focused RT-qPCR array study on immune relevant genes in rainbow trout (Oncorhynchus mykiss) harboring cecropin P1 transgene, Fish & Shellfish Immunology, vol.89, pp.1-11, 2019.

K. D. Song and W. K. Lee, Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from <italic>Pichia pastoris</italic>, Asian-Australasian Journal of Animal Sciences, vol.27, issue.2, pp.278-283, 2014.

H. Bruhn, A short guided tour through functional and structural features of saposin-like proteins, Biochemical Journal, vol.389, issue.2, pp.249-257, 2005.

T. Roeder, M. Stanisak, C. Gelhaus, I. Bruchhaus, J. Grötzinger et al., Caenopores are antimicrobial peptides in the nematode Caenorhabditis elegans instrumental in nutrition and immunity, Developmental & Comparative Immunology, vol.34, issue.2, pp.203-209, 2010.

K. Dierking, W. Yang, and H. Schulenburg, Antimicrobial effectors in the nematode Caenorhabditis elegans : an outgroup to the Arthropoda, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.371, issue.1695, p.20150299, 2016.

J. J. Ewbank and O. C. Zugasti, C. elegans: model host and tool for antimicrobial drug discovery, Disease Models & Mechanisms, vol.4, issue.3, pp.300-304, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02109598

A. Hoeckendorf, M. Stanisak, and M. Leippe, The saposin-like protein SPP-12 is an antimicrobial polypeptide in the pharyngeal neurons of Caenorhabditis elegans and participates in defence against a natural bacterial pathogen, Biochemical Journal, vol.445, issue.2, pp.205-212, 2012.

D. Wong, D. Bazopoulou, N. Pujol, N. Tavernarakis, and J. J. Ewbank, Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection, Genome Biology, vol.8, issue.9, p.R194, 2007.

J. Mysliwy, A. J. Dingley, M. Stanisak, S. Jung, I. Lorenzen et al., Caenopore-5: The three-dimensional structure of an antimicrobial protein from Caenorhabditis elegans, Developmental & Comparative Immunology, vol.34, issue.3, pp.323-330, 2010.

A. E. Shinnar, K. L. Butler, and H. J. Park, Cathelicidin family of antimicrobial peptides: Proteolytic processing and protease resistance, Bioorganic Chem, vol.31, pp.425-436, 2003.

A. Tasiemski, Antimicrobial peptides in annelids, Lab. Neuroimmunol. Annelides, pp.75-82, 2008.

G. Xu, M. Wu, L. Wang, X. Zhang, S. Cao et al., Conformational and dynamics simulation study of antimicrobial peptide hedistin-Heterogeneity of its helix-turn-helix motif, Biochim. Biophys. Acta (BBA) Biomembr, vol.1788, pp.2497-2508, 2009.

. Bruno, . Maresca, . Canaan, . Cavalier, . Mabrouk et al., Worms? Antimicrobial Peptides, Marine Drugs, vol.17, issue.9, p.512, 2019.

K. H. Hoegenhaug, P. H. Mygind, T. Kruse, D. R. Segura, D. H. Sandvang et al., Antimicrobial Peptide Variants and Polynucleotides Encoding Same. US Patent US8835604B2, 2014.

H. Willander, E. Hermansson, J. Johansson, and J. Presto, BRICHOS domain associated with lung fibrosis, dementia and cancer-A chaperone that prevents amyloid fibril formation?, FEBS J, vol.278, pp.3893-3904, 2011.

A. Sommer and H. Pörtner, Metabolic cold adaptation in the lugworm Arenicola marina: Comparison of a North Sea and a White Sea population, Mar. Ecol. Prog. Ser, vol.240, pp.171-182, 2002.

N. Spodsberg, Polypeptides Having Antimicrobial Activity and Polynucleotides Encoding Same. US Patent 7745576B2, p.29, 2010.

D. Desbruyères, P. Chevaldonné, A. M. Alayse, D. Jollivet, F. H. Lallier et al., Biology and ecology of the ?Pompeii worm? (Alvinella pompejana Desbruyères and Laubier), a normal dweller of an extreme deep-sea environment: A synthesis of current knowledge and recent developments, Deep Sea Research Part II: Topical Studies in Oceanography, vol.45, issue.1-3, pp.383-422, 1998.

J. A. Blake, J. P. Grassle, and K. J. Eckelbarger, <p class="HeadingRunIn"><strong><em>Capitella teleta</em>, a new species designation for the opportunistic and experimental <em>Capitella</em> sp. I, with a review of the literature for confirmed records</strong></p>, Zoosymposia, vol.2, issue.1, pp.25-53, 2009.

J. Cho and D. G. Lee, The characteristic region of arenicin-1 involved with a bacterial membrane targeting mechanism, Biochemical and Biophysical Research Communications, vol.405, issue.3, pp.422-427, 2011.

T. V. Ovchinnikova, Z. O. Shenkarev, K. D. Nadezhdin, S. V. Balandin, M. N. Zhmak et al., Recombinant expression, synthesis, purification, and solution structure of arenicin, Biochem. Biophys. Res. Commun, vol.360, pp.156-162, 2007.

J. Andrä, I. Jakovkin, J. Grötzinger, O. Hecht, A. D. Krasnosdembskaya et al., Structure and mode of action of the antimicrobial peptide arenicin, Biochemical Journal, vol.410, issue.1, pp.113-122, 2008.

J. Lee, K. H. Park, J. Lee, J. Kim, S. Y. Shin et al., Cell Selectivity of Arenicin-1 and Its Derivative with Two Disulfide Bonds, Bulletin of the Korean Chemical Society, vol.29, issue.6, pp.1190-1194, 2008.

R. L. Fahrner, T. Dieckmann, S. S. Harwig, R. I. Lehrer, D. Eisenberg et al., Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes, Chemistry & Biology, vol.3, issue.7, pp.543-550, 1996.

A. Laederach, A. H. Andreotti, and D. B. Fulton, Solution and Micelle-Bound Structures of Tachyplesin I and Its Active Aromatic, Society, pp.12359-12368, 2002.

D. V. Kuzmin, A. A. Emelianova, M. B. Kalashnikova, P. V. Panteleev, S. V. Balandin et al., Comparative in vitro study on cytotoxicity of recombinant ?-hairpin peptides, Chemical Biology & Drug Design, vol.91, issue.1, pp.294-303, 2017.

I. A. Edwards, A. G. Elliott, A. M. Kavanagh, J. Zuegg, M. A. Blaskovich et al., Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of ?-Hairpin Peptides, ACS Infectious Diseases, vol.2, issue.6, pp.442-450, 2016.

P. V. Panteleev, I. A. Bolosov, and T. V. Ovchinnikova, Bioengineering and functional characterization of arenicin shortened analogs with enhanced antibacterial activity and cell selectivity, Journal of Peptide Science, vol.22, issue.2, pp.82-91, 2015.

Y. Shai, Mode of action of membrane active antimicrobial peptides, Biopolymers, vol.66, issue.4, pp.236-248, 2002.

J. U. Lee, D. I. Kang, W. L. Zhu, S. Y. Shin, K. S. Hahm et al., Solution structures and biological functions of the antimicrobial peptide, arenicin-1, and its linear derivative, Biopolymers, vol.88, issue.2, pp.208-216, 2007.

P. V. Panteleev, M. Y. Myshkin, Z. O. Shenkarev, and T. V. Ovchinnikova, Dimerization of the antimicrobial peptide arenicin plays a key role in the cytotoxicity but not in the antibacterial activity, Biochemical and Biophysical Research Communications, vol.482, issue.4, pp.1320-1326, 2017.

H. Choi and D. G. Lee, Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria, Research in Microbiology, vol.163, issue.6-7, pp.479-486, 2012.

C. Park and D. G. Lee, Fungicidal effect of antimicrobial peptide arenicin-1, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.9, pp.1790-1796, 2009.

. Bruno, . Maresca, . Canaan, . Cavalier, . Mabrouk et al., Worms? Antimicrobial Peptides, Marine Drugs, vol.17, issue.9, p.512, 2019.

Z. O. Shenkarev, S. V. Balandin, K. I. Trunov, A. S. Paramonov, S. V. Sukhanov et al., Molecular Mechanism of Action of ?-Hairpin Antimicrobial Peptide Arenicin: Oligomeric Structure in Dodecylphosphocholine Micelles and Pore Formation in Planar Lipid Bilayers, Biochemistry, vol.50, issue.28, pp.6255-6265, 2011.

S. V. Sychev, S. V. Sukhanov, P. V. Panteleev, Z. O. Shenkarev, and T. V. Ovchinnikova, Marine antimicrobial peptide arenicin adopts a monomeric twisted ?-hairpin structure and forms low conductivity pores in zwitterionic lipid bilayers, Peptide Science, vol.110, issue.2, p.e23093, 2018.

M. R. Yeaman and N. Y. Yount, Mechanisms of Antimicrobial Peptide Action and Resistance, Pharmacological Reviews, vol.55, issue.1, pp.27-55, 2003.

T. V. Ovchinnikova, Z. O. Shenkarev, S. V. Balandin, K. D. Nadezhdin, A. S. Paramonov et al., Molecular insight into mechanism of antimicrobial action of the ?-hairpin peptide arenicin: Specific oligomerization in detergent micelles, Biopolymers, vol.89, issue.5, pp.455-464, 2008.

J. Cho and D. G. Lee, The antimicrobial peptide arenicin-1 promotes generation of reactive oxygen species and induction of apoptosis, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1810, issue.12, pp.1246-1251, 2011.

J. Andrä, M. U. Hammer, J. Grötzinger, I. Jakovkin, B. Lindner et al., Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes, Biological Chemistry, vol.390, issue.4, pp.337-349, 2009.

N. Yang, X. Wang, D. Teng, R. Mao, Y. Hao et al., Deleting the first disulphide bond in an arenicin derivative enhances its expression in Pichia pastoris, Letters in Applied Microbiology, vol.65, issue.3, pp.241-248, 2017.

N. Yang, X. Liu, D. Teng, Z. Li, X. Wang et al., Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis, Scientific Reports, vol.7, issue.1, 2017.

A. L. Maltseva, O. N. Kotenko, V. N. Kokryakov, V. V. Starunov, and A. D. Krasnodembskaya, Expression pattern of arenicinsâ??the antimicrobial peptides of polychaete Arenicola marina, Frontiers in Physiology, vol.5, pp.1-11, 2014.

P. V. Panteleev, A. V. Tsarev, I. A. Bolosov, A. S. Paramonov, M. B. Marggraf et al., Novel Antimicrobial Peptides from the Arctic Polychaeta Nicomache minor Provide New Molecular Insight into Biological Role of the BRICHOS Domain, Marine Drugs, vol.16, issue.11, p.401, 2018.

T. D. Shcherbakova, A. B. Tzetlin, M. V. Mardashova, and O. S. Sokolova, Fine structure of the tubes of Maldanidae (Annelida), Journal of the Marine Biological Association of the United Kingdom, vol.97, issue.5, pp.1177-1187, 2017.

Y. Kato, T. Aizawa, H. Hoshino, K. Kawano, K. Nitta et al., abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans, Biochemical Journal, vol.361, issue.2, pp.221-230, 2002.

Y. Kato, Humoral Defense of the Nematode Ascaris suum: Antibacterial, Bacteriolytic and Agglutinating Activities in the Body Fluid, Zoological Science, vol.12, issue.2, pp.225-230, 1995.

D. E. Tarr, Nematode antimicrobial peptides, Invertebr. Surviv. J, pp.122-133, 2012.

M. Minaba, S. Ueno, A. Pillai, and Y. Kato, Evolution of ASABF (Ascaris suum antibacterial factor)-type antimicrobial peptides in nematodes: Putative rearrangement of disulfide bonding patterns, Developmental & Comparative Immunology, vol.33, issue.11, pp.1147-1150, 2009.

A. Pillai, S. Ueno, H. Zhang, and Y. Kato, Induction of ASABF (Ascaris suum antibacterial factor)-type antimicrobial peptides by bacterial injection: novel members of ASABF in the nematode Ascaris suum, Biochemical Journal, vol.371, issue.3, pp.663-668, 2003.

H. Zhang, S. Yoshida, T. Aizawa, R. Murakami, M. Suzuki et al., In Vitro Antimicrobial Properties of Recombinant ASABF, an Antimicrobial Peptide Isolated from the NematodeAscaris suum, Antimicrobial Agents and Chemotherapy, vol.44, issue.10, pp.2701-2705, 2000.

S. Jung, A. J. Dingley, R. Augustin, F. Anton-erxleben, M. Stanisak et al., Hydramacin-1, Structure and Antibacterial Activity of a Protein from the Basal MetazoanHydra, Journal of Biological Chemistry, vol.284, issue.3, pp.1896-1905, 2008.

M. Gerdol, G. De-moro, C. Manfrin, P. Venier, and A. Pallavicini, Big defensins and mytimacins, new AMP families of the Mediterranean mussel Mytilus galloprovincialis, Developmental & Comparative Immunology, vol.36, issue.2, pp.390-399, 2012.

J. Wilkialis and R. W. Davies, The population ecology of the leech (Hirudinoidea:Glossiphoniidae) Theromyzon tessulatum, Canadian Journal of Zoology, vol.58, issue.5, pp.906-912, 1980.

C. Duval, Hirudo medicinalis: De sa physiologie à l'hirudothérapie Thèse pour le diplôme d'état de Docteur en pharmacie, Pharm. Sci, vol.2013

C. W. Hung, S. Jung, J. Grötzinger, C. Gelhaus, M. Leippe et al., Determination of disulfide linkages in antimicrobial peptides of the macin family by combination of top-down and bottom-up proteomics, Journal of Proteomics, vol.103, pp.216-226, 2014.

A. Tasiemski and M. Salzet, Leech Immunity: From Brain to Peripheral Responses, Advances in Experimental Medicine and Biology, vol.708, pp.80-104, 2010.

C. Li, L. S. Nelson, K. Kim, A. Nathoo, and A. C. Hart, Neuropeptide Gene Families in the Nematode Caenorhabditis elegansa, Annals of the New York Academy of Sciences, vol.897, issue.1 NEUROPEPTIDES, pp.239-252, 1999.

A. N. Nathoo, R. A. Moeller, B. A. Westlund, and A. C. Hart, Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species, Proceedings of the National Academy of Sciences, vol.98, issue.24, pp.14000-14005, 2001.

P. Mcveigh, S. Alexander-bowman, E. Veal, A. Mousley, N. J. Marks et al., Neuropeptide-like protein diversity in phylum Nematoda, International Journal for Parasitology, vol.38, issue.13, pp.1493-1503, 2008.

M. P. Lim, M. Firdaus-raih, and S. Nathan, Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection, Frontiers in Microbiology, vol.7, p.807, 2016.

X. Wang, X. Wang, Y. Zhang, X. Qu, and S. Yang, An antimicrobial peptide of the earthworm Pheretima tschiliensis: cDNA cloning, expression and immunolocalization, Biotechnology Letters, vol.25, issue.16, pp.1317-1323, 2003.

K. Bodó, Á. Boros, É. Rumpler, L. Molnár, K. Böröcz et al., Identification of novel lumbricin homologues in Eisenia andrei earthworms, Developmental & Comparative Immunology, vol.90, pp.41-46, 2019.

W. Li, S. Li, J. Zhong, Z. Zhu, J. Liu et al., A novel antimicrobial peptide from skin secretions of the earthworm, Pheretima guillelmi (Michaelsen), Peptides, vol.32, issue.6, pp.1146-1150, 2011.

M. Bilej, P. Procházková, M. ?ilerová, and R. Josková, Earthworm Immunity, Advances in Experimental Medicine and Biology, vol.708, pp.66-79, 2010.

S. Gupta and S. Yadav, Immuno-defense Strategy in Earthworms: A Review Article, International Journal of Current Microbiology and Applied Sciences, vol.5, issue.4, pp.1022-1035, 2016.

Q. Zhou, M. Li, and T. Xi, Cloning and Expression of a Clamworm Antimicrobial Peptide Perinerin in Pichia pastoris, Current Microbiology, vol.58, issue.4, pp.384-388, 2009.

F. Sun, Q. Zhou, M. Wang, and J. An, Joint stress of copper and petroleum hydrocarbons on the polychaete Perinereis aibuhitensis at biochemical levels, Ecotoxicology and Environmental Safety, vol.72, issue.7, pp.1887-1892, 2009.

V. J. Smith, A. P. Desbois, and E. A. Dyrynda, Conventional and Unconventional Antimicrobials from Fish, Marine Invertebrates and Micro-algae, Marine Drugs, vol.8, issue.4, pp.1213-1262, 2010.

E. Tortorella, P. Tedesco, F. Palma-esposito, G. G. January, R. Fani et al., Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives, Marine Drugs, vol.16, issue.10, p.355, 2018.

S. Bulgheresi, All the microbiology nematodes can teach us, FEMS Microbiology Ecology, vol.92, issue.2, p.fiw007, 2016.

A. E. Douglas, Conflict, cheats and the persistence of symbioses, New Phytologist, vol.177, issue.4, pp.849-858, 2008.