A. C. Alonso, T. Zaidi, T. Grundke-iqbal, and K. Iqbal, Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease, Proc Natl. Acad. Sci. U S A, vol.91, pp.5562-5566, 1994.

G. M. Alushin, G. C. Lander, E. H. Kellogg, R. Zhang, D. Baker et al., High-resolution microtubule structures reveal the structural transitions in ??-tubulin upon GTP hydrolysis, Cell, vol.157, pp.1117-1129, 2014.

L. Amniai, P. Barbier, A. Sillen, J. Wieruszeski, V. Peyrot et al., Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules, FASEB J, vol.23, pp.1146-1152, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00348164

L. A. Amos and D. Schlieper, Microtubules and maps, Adv. Protein Chem, vol.71, pp.257-298, 2005.

P. W. Baas and L. Qiang, Tau: it's not what you think, Trends Cell Biol, vol.29, pp.452-461, 2019.

P. W. Baas, A. N. Rao, A. J. Matamoros, L. , and L. , Stability properties of neuronal microtubules, Cytoskelet, vol.73, pp.442-460, 2016.

C. Ballatore, K. R. Brunden, J. Q. Trojanowski, V. M. Lee, A. B. Smith et al., Modulation of protein-protein interactions as a therapeutic strategy for the treatment of neurodegenerative tauopathies, Curr. Top. Med. Chem, vol.11, pp.317-330, 2011.

P. Barbier, A. Dorléans, F. Devred, L. Sanz, D. Allegro et al., Stathmin and interfacial microtubule inhibitors recognize a naturally curved conformation of tubulin dimers, J. Biol. Chem, vol.285, pp.31672-31681, 2010.

S. Barghorn, Q. Zheng-fischhöfer, M. Ackmann, J. Biernat, M. Von-bergen et al., Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias, Biochemistry, vol.39, pp.11714-11721, 2000.

J. Biernat, N. Gustke, G. Drewes, E. M. Mandelkow, and E. Mandelkow, Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding, Neuron, vol.11, issue.93, p.90279, 1993.

L. I. Binder, A. Frankfurter, and L. I. Rebhun, The distribution of tau in the mammalian central nervous system, J. Cell Biol, vol.101, pp.1371-1378, 1985.

M. M. Black, T. Slaughter, S. Moshiach, M. Obrocka, and I. Fischer, Tau is enriched on dynamic microtubules in the distal region of growing axons, J. Neurosci, vol.16, pp.3601-3619, 1996.

P. F. Boston, P. Jackson, and R. J. Thompson, Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders, J. Neurochem, vol.38, pp.1475-1482, 1982.

H. Bowne-anderson, A. Hibbel, and J. Howard, Regulation of microtubule growth and catastrophe: unifying theory and experiment, Trends Cell Biol, vol.25, pp.769-779, 2015.

G. Breuzard, P. Hubert, R. Nouar, T. De-bessa, F. Devred et al., Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells, J. Cell Sci, vol.126, pp.2810-2819, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01458234

G. Breuzard, A. Pagano, S. Bastonero, S. Malesinski, F. Parat et al., Tau regulates the microtubule-dependent migration of glioblastoma cells via the Rho-ROCK signaling pathway, J. Cell Sci, vol.132, p.222851, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01987458

J. P. Brion, J. Flament-durand, D. , and P. , Alzheimer's disease and tau proteins, Lancet, vol.2, issue.86, pp.90495-90497, 1986.

K. R. Brunden, J. Q. Trojanowski, and V. M. Lee, Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies, Nat. Rev. Drug Discov, vol.8, pp.783-793, 2009.

K. R. Brunden, Y. Yao, J. S. Potuzak, N. I. Ferrer, C. Ballatore et al., The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer's disease and related tauopathies, Pharmacol. Res, vol.63, pp.341-351, 2011.

K. A. Butner and M. W. Kirschner, Tau protein binds to microtubules through a flexible array of distributed weak sites, J. Cell Biol, vol.115, pp.717-730, 1991.

M. Caplow and J. Shanks, Mechanism of the microtubule GTPase reaction, J. Biol. Chem, vol.265, pp.8935-8941, 1990.

M. F. Carlier, D. Didry, C. Simon, and D. Pantaloni, Mechanism of GTP hydrolysis in tubulin polymerization: characterization of the kinetic intermediate microtubule-GDP-Pi using phosphate analogues, Biochemistry, vol.28, pp.1783-1791, 1989.

Y. Carlomagno, D. C. Chung, M. Yue, M. Castanedes-casey, B. J. Madden et al., An acetylation-phosphorylation switch that regulates tau aggregation propensity and function, J. Biol. Chem, vol.292, pp.15277-15286, 2017.

A. D. Cash, G. Aliev, S. L. Siedlak, A. Nunomura, H. Fujioka et al., Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation, Am. J. Pathol, vol.162, issue.10, pp.64296-64300, 2003.

J. Chen, Y. Kanai, N. J. Cowan, and N. Hirokawa, Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons, Nature, vol.360, pp.674-677, 1992.

D. Chrétien, S. D. Fuller, and E. Karsenti, Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates, J. Cell Biol, vol.129, pp.1311-1328, 1995.

T. J. Cohen, J. L. Guo, D. E. Hurtado, L. K. Kwong, I. P. Mills et al., The acetylation of tau inhibits its function and promotes pathological tau aggregation, Nat. Commun, vol.2, p.252, 2011.

B. Combs and T. C. Gamblin, FTDP-17 tau mutations induce distinct effects on aggregation and microtubule interactions, Biochemistry, vol.51, pp.8597-8607, 2012.

J. Cummings, G. Lee, T. Mortsdorf, A. Ritter, and K. Zhong, Alzheimer's disease drug development pipeline, Alzheimers Dement, vol.3, pp.367-384, 2017.

I. D'souza, P. Poorkaj, M. Hong, D. Nochlin, V. M. Lee et al., Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements, Proc. Natl. Acad. Sci. U S A, vol.96, pp.5598-5603, 1999.

G. Das and S. Ghosh, Why microtubules should be considered as one of the supplementary targets for designing neurotherapeutics, ACS Chem. Neurosci, vol.10, pp.1118-1120, 2019.

R. Dayanandan, M. Van-slegtenhorst, T. G. Mack, L. Ko, S. H. Yen et al., Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation, FEBS Lett, vol.446, pp.228-232, 1999.

P. Delobel, S. Flament, M. Hamdane, R. Jakes, A. Rousseau et al., Functional characterization of FTDP-17 tau gene mutations through their effects on Xenopus oocyte maturation, J. Biol. Chem, vol.277, pp.9199-9205, 2002.

M. Deture, L. W. Ko, S. Yen, P. Nacharaju, C. Easson et al., Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions, Brain Res, vol.853, issue.99, pp.2124-2125, 2000.

F. Devred, P. Barbier, S. Douillard, O. Monasterio, J. M. Andreu et al., Tau induces ring and microtubule formation from ??-tubulin dimers under nonassembly conditions, Biochemistry, vol.43, pp.10520-10531, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01340743

F. Devred, P. Barbier, D. Lafitte, I. Landrieu, G. Lippens et al., Microtubule and MAPs: thermodynamics of complex formation by AUC, ITC, fluorescence, and NMR, Methods Cell Biol, vol.95, issue.10, pp.95023-95024, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508818

F. Devred, S. Douillard, C. Briand, and V. Peyrot, First tau repeat domain binding to growing and taxol-stabilized microtubules and serine 262 residue phosphorylation, FEBS Lett, vol.523, p.2999, 2002.

D. Maio, I. L. Barbier, P. Allegro, D. Brault, C. Peyrot et al., Quantitative analysis of tau-microtubule interaction using FRET, Int. J. Mol. Sci, vol.15, pp.14697-14714, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01314628

C. Di-primio, V. Quercioli, G. Siano, M. Rovere, B. Kovacech et al., The distance between N and C termini of Tau and of FTDP-17 mutants is modulated by microtubule interactions in living cells, Front. Mol. Neurosci, vol.10, p.210, 2017.

J. P. Dompierre, J. D. Godin, B. C. Charrin, F. P. Cordelières, S. J. King et al., Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation, J. Neurosci, vol.27, pp.3571-3583, 2007.

Z. J. Donhauser, J. T. Saunders, D. S. D'urso, and T. A. Garrett, Dimerization and long-range repulsion established by both termini of the microtubule-associated protein Tau, Biochemistry, vol.56, pp.5900-5909, 2017.

A. R. Duan, E. M. Jonasson, E. O. Alberico, C. Li, J. P. Scripture et al., Interactions between Tau and different conformations of tubulin: implications for Tau function and mechanism, J. Mol. Biol, vol.429, pp.1424-1438, 2017.

B. Eftekharzadeh, J. G. Daigle, L. E. Kapinos, A. Coyne, J. Schiantarelli et al., Tau protein disrupts nucleocytoplasmic transport in Alzheimer's disease, Neuron, vol.99, 2018.

C. Fauquant, V. Redeker, I. Landrieu, J. M. Wieruszeski, D. Verdegem et al., Systematic identification of tubulin-interacting fragments of the microtubule-associated protein Tau leads to a highly efficient promoter of microtubule assembly, J. Biol. Chem, vol.286, pp.33358-33368, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00618268

Y. Fichou, Y. K. Al-hilaly, F. Devred, C. Smet-nocca, P. O. Tsvetkov et al., The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention?, Acta Neuropathol. Commun, vol.7, p.31, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02055894

S. Gadadhar, S. Bodakuntla, K. Natarajan, and C. Janke, The tubulin code at a glance, J. Cell Sci, vol.130, pp.1347-1353, 2017.

B. Gigant, P. A. Curmi, C. Martin-barbey, E. Charbaut, S. Lachkar et al., The 4 A X-ray structure of a tubulin:stathminlike domain complex, Cell, vol.102, pp.69-75, 2000.

B. Gigant, I. Landrieu, C. Fauquant, P. Barbier, I. Huvent et al., Mechanism of Tau-promoted microtubule assembly as probed by NMR spectroscopy, J. Am. Chem. Soc, vol.136, pp.12615-12623, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077829

V. K. Godena, N. Brookes-hocking, A. Moller, G. Shaw, M. Oswald et al., Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations, Nat. Commun, vol.5, p.5245, 2014.

M. Goedert, M. G. Spillantini, R. Jakes, D. Rutherford, and R. A. Crowther, Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease, Neuron, vol.3, pp.519-526, 1989.

B. L. Goode, M. Chau, P. E. Denis, and S. C. Feinstein, Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease, J. Biol. Chem, vol.275, pp.38182-38189, 2000.

B. L. Goode, P. E. Denis, D. Panda, M. J. Radeke, H. P. Miller et al., Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly, Mol. Biol. Cell, vol.8, pp.353-365, 1997.

N. Govindarajan, P. Rao, S. Burkhardt, F. Sananbenesi, O. M. Schlüter et al., Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease, EMBO Mol. Med, vol.5, pp.52-63, 2013.

W. Guo, M. Naujock, L. Fumagalli, T. Vandoorne, P. Baatsen et al., HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients, Nat. Commun, vol.8, p.861, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01628414

N. Gustke, B. Trinczek, J. Biernat, E. M. Mandelkow, and E. Mandelkow, Domains of tau protein and interactions with microtubules, Biochemistry, vol.33, pp.9511-9522, 1994.

M. Hasegawa, M. J. Smith, and M. Goedert, Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly, FEBS Lett, vol.437, pp.207-210, 1998.

M. Hashiguchi, K. Sobue, and H. K. Paudel, 14-3-3? is an effector of tau protein phosphorylation, J. Biol. Chem, vol.275, pp.25247-25254, 2000.

F. Hernández and J. Avila, Tauopathies. Cell. Mol. Life Sci, vol.64, pp.2219-2233, 2007.

A. Hernández-vega, M. Braun, L. Scharrel, M. Jahnel, S. Wegmann et al., Local nucleation of microtubule bundles through tubulin concentration into a condensed Tau phase, Cell Rep, vol.20, pp.2304-2312, 2017.

A. Himmler, D. Drechsel, M. W. Kirschner, and D. W. Martin, Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains, Mol. Cell. Biol, vol.9, pp.1381-1388, 1989.

M. H. Hinrichs, A. Jalal, B. Brenner, E. Mandelkow, S. Kumar et al., Tau protein diffuses along the microtubule lattice, J. Biol. Chem, vol.287, pp.38559-38568, 2012.

M. Hong, V. Zhukareva, V. Vogelsberg-ragaglia, Z. Wszolek, L. Reed et al., Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17, Science, vol.282, pp.1914-1917, 1998.

W. D. Howard and S. N. Timasheff, GDP state of tubulin: stabilization of double rings, Biochemistry, vol.25, pp.8292-8300, 1986.

D. J. Irwin, T. J. Cohen, M. Grossman, S. E. Arnold, E. Mccarty-wood et al., Acetylated tau neuropathology in sporadic and hereditary tauopathies, Am. J. Pathol, vol.183, pp.344-351, 2013.

D. J. Irwin, T. J. Cohen, M. Grossman, S. E. Arnold, S. X. Xie et al., Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies, Brain, vol.135, pp.807-818, 2012.

S. Jadhav, J. Avila, M. Schöll, G. G. Kovacs, E. Kövari et al., A walk through tau therapeutic strategies, Acta Neuropathol. Commun, vol.7, p.22, 2019.

D. Janning, M. Igaev, F. Sündermann, J. Brühmann, O. Beutel et al., Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons, Mol. Biol. Cell, vol.25, pp.3541-3551, 2014.

S. Jeganathan, M. Von-bergen, H. Brutlach, H. J. Steinhoff, and E. Mandelkow, Global hairpin folding of tau in solution, Biochemistry, vol.45, pp.2283-2293, 2006.

Y. Joo, B. Schumacher, I. Landrieu, M. Bartel, C. Smet-nocca et al., Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau, FASEB J, vol.29, pp.4133-4144, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221914

H. Kadavath, Y. Cabrales-fontela, M. Jaremko, ?. Jaremko, K. Overkamp et al., The binding mode of a Tau peptide with tubulin, Angew. Chem. Int. Ed Engl, vol.57, pp.3246-3250, 2018.

H. Kadavath, R. V. Hofele, J. Biernat, S. Kumar, K. Tepper et al., Tau stabilizes microtubules by binding at the interface between tubulin heterodimers, Proc. Natl. Acad. Sci. U S A, vol.112, pp.7501-7506, 2015.

H. Kadavath, M. Jaremko, ?. Jaremko, J. Biernat, E. Mandelkow et al., Folding of the Tau protein on microtubules, Angew. Chem. Int. Ed Engl, vol.54, pp.10347-10351, 2015.

A. Kamah, I. Huvent, F. Cantrelle, H. Qi, G. Lippens et al., Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal Tau protein, Biochemistry, vol.53, pp.3020-3032, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077868

S. Kar, J. Fan, M. J. Smith, M. Goedert, A. et al., Repeat motifs of tau bind to the insides of microtubules in the absence of taxol, EMBO J, vol.22, pp.70-77, 2003.

E. H. Kellogg, N. M. Hejab, S. Poepsel, K. H. Downing, F. Dimaio et al., Near-atomic model of microtubule-tau interactions, Science, vol.360, pp.1242-1246, 2018.

M. Kilgore, C. A. Miller, D. M. Fass, K. M. Hennig, S. J. Haggarty et al., Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease, Neuropsychopharmacology, vol.35, pp.870-880, 2010.

F. J. Kull and R. D. Sloboda, A slow dance for microtubule acetylation, Cell, vol.157, pp.1255-1256, 2014.

S. Kutter, T. Eichner, A. M. Deaconescu, and D. Kern, Regulation of microtubule assembly by tau and not by Pin1, J. Mol. Biol, vol.428, pp.1742-1759, 2016.

R. Layfield, J. Fergusson, A. Aitken, J. Lowe, M. Landon et al., Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins, Neurosci. Lett, vol.209, pp.57-60, 1996.

A. C. Leboeuf, S. F. Levy, M. Gaylord, A. Bhattacharya, A. K. Singh et al., FTDP-17 mutations in Tau alter the regulation of microtubule dynamics: an ''alternative core'' model for normal and pathological Tau action, J. Biol. Chem, vol.283, pp.36406-36415, 2008.

V. M. Lee, .. Kenyon, T. K. Trojanowski, and J. Q. , Transgenic animal models of tauopathies, Biochim. Biophys. Acta, vol.1739, pp.251-259, 2005.

X. Li, J. A. Culver, and E. Rhoades, Tau binds to multiple tubulin dimers with helical structure, J. Am. Chem. Soc, vol.137, pp.9218-9221, 2015.

Z. Li, Q. Xiong, J. Tu, Y. Gong, W. Qiu et al., Tau proteins expressions in advanced breast cancer and its significance in taxane-containing neoadjuvant chemotherapy, Med. Oncol, vol.30, p.591, 2013.

H. Lin, L. Zheng, S. Li, B. Xie, B. Cui et al., Cytotoxicity of Tanshinone IIA combined with Taxol on drug-resist breast cancer cells MCF-7 through inhibition of Tau, Phytother. Res, vol.32, pp.667-671, 2018.

G. Lindwall, C. , and R. D. , Phosphorylation affects the ability of tau protein to promote microtubule assembly, J. Biol. Chem, vol.259, pp.5301-5305, 1984.

P. J. Lu, G. Wulf, X. Z. Zhou, P. Davies, and K. P. Lu, The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein, Nature, vol.399, pp.784-788, 1999.

M. M. Magiera, S. Bodakuntla, J. ?iak, S. Lacomme, P. Sousa et al., Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport, EMBO J, vol.37, p.100440, 2018.

V. Makrides, M. R. Massie, S. C. Feinstein, L. , and J. , Evidence for two distinct binding sites for tau on microtubules, Proc. Natl. Acad. Sci. U S A, vol.101, pp.6746-6751, 2004.

S. Malesinski, P. O. Tsvetkov, A. Kruczynski, V. Peyrot, and F. Devred, Stathmin potentiates vinflunine and inhibits Paclitaxel activity, PLoS One, vol.10, p.128704, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01207790

E. M. Mandelkow, J. Biernat, G. Drewes, N. Gustke, B. Trinczek et al., Tau domains, phosphorylation and interactions with microtubules, Neurobiol. Aging, vol.16, pp.355-362, 1995.

M. Martinho, D. Allegro, I. Huvent, C. Chabaud, E. Etienne et al., Two Tau binding sites on tubulin revealed by thiol-disulfide exchanges, Sci. Rep, vol.8, p.13846, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01883844

N. Matsumura, T. Yamazaki, and Y. Ihara, Stable expression in Chinese hamster ovary cells of mutated tau genes causing frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), Am. J. Pathol, vol.154, issue.10, p.65420, 1999.

R. Melki, M. F. Carlier, D. Pantaloni, and S. N. Timasheff, Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies, Biochemistry, vol.28, pp.9143-9152, 1989.

K. Melková, V. Zapletal, S. Narasimhan, S. Jansen, J. Hritz et al., Structure and functions of microtubule associated proteins tau and MAP2c: similarities and differences, Biomolecules, vol.9, p.105, 2019.

A. M. Melo, J. Coraor, G. Alpha-cobb, S. Elbaum-garfinkle, A. Nath et al., A functional role for intrinsic disorder in the tau-tubulin complex, Proc. Natl. Acad. Sci. U S A, vol.113, pp.14336-14341, 2016.

S. Min, X. Chen, T. E. Tracy, Y. Li, Y. Zhou et al., Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits, Nat. Med, vol.21, pp.1154-1162, 2015.

S. W. Min, S. H. Cho, Y. Zhou, S. Schroeder, V. Haroutunian et al., Acetylation of tau inhibits its degradation and contributes to tauopathy, Neuron, vol.67, pp.953-966, 2010.

S. Min, P. D. Sohn, Y. Li, N. Devidze, J. R. Johnson et al., SIRT1 deacetylates tau and reduces pathogenic tau spread in a mouse model of tauopathy, J. Neurosci, vol.38, pp.3680-3688, 2018.

T. Mitchison and M. Kirschner, Dynamic instability of microtubule growth, Nature, vol.312, pp.237-242, 1984.

F. Monacelli, M. Cea, R. Borghi, P. Odetti, and A. Nencioni, Do cancer drugs counteract neurodegeneration? Repurposing for Alzheimer's disease, J. Alzheimers Dis, vol.55, pp.1295-1306, 2017.

P. Mondal, G. Das, J. Khan, K. Pradhan, and S. Ghosh, Crafting of neuroprotective octapeptide from taxol-binding pocket of ?-tubulin, 2018.

, ACS Chem. Neurosci, vol.9, pp.615-625

M. Morris, G. M. Knudsen, S. Maeda, J. C. Trinidad, A. Ioanoviciu et al., Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice, Nat. Neurosci, vol.18, pp.1183-1189, 2015.

A. Mudher, J. Brion, J. Avila, M. Medina, and L. Buée, EuroTau: towing scientists to tau without tautology, Acta Neuropathol. Commun, vol.5, p.90, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01654097

R. Mukhopadhyay and J. H. Hoh, AFM force measurements on microtubule-associated proteins: the projection domain exerts a long-range repulsive force, FEBS Lett, vol.505, pp.374-378, 2001.

M. D. Mukrasch, S. Bibow, J. Korukottu, S. Jeganathan, J. Biernat et al., Structural polymorphism of 441-residue tau at single residue resolution, PLoS Biol, vol.7, 2009.

M. D. Mukrasch, P. Markwick, J. Biernat, M. Bergen, P. Bernado et al., Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation, J. Am. Chem. Soc, vol.129, pp.5235-5243, 2007.

D. B. Murphy, K. A. Johnson, and G. G. Borisy, Role of tubulin-associated proteins in microtubule nucleation and elongation, J. Mol. Biol, vol.117, pp.33-52, 1977.

Y. Mutreja, B. Combs, and T. C. Gamblin, FTDP-17 mutations alter the aggregation and microtubule stabilization propensity of tau in an isoformspecific fashion, Biochemistry, vol.58, pp.742-754, 2019.

E. W. Nagiec, K. E. Sampson, A. , and I. , Mutated tau binds less avidly to microtubules than wildtype tau in living cells, J. Neurosci. Res, vol.63, pp.268-275, 2001.

A. Nawrotek, M. Knossow, and B. Gigant, The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin, J. Mol. Biol, vol.412, pp.35-42, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02120600

R. Nouar, F. Devred, G. Breuzard, and V. Peyrot, FRET and FRAP imaging: approaches to characterise tau and stathmin interactions with microtubules in cells, Biol. Cell, vol.105, pp.149-161, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01744472

S. Oz, O. Kapitansky, Y. Ivashco-pachima, A. Malishkevich, E. Giladi et al., The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins, Mol. Psychiatry, vol.19, pp.1115-1124, 2014.

Y. I. Pachima, L. Zhou, P. Lei, and I. Gozes, Microtubule-tau interaction as a therapeutic target for Alzheimer's disease, J. Mol. Neurosci, vol.58, pp.145-152, 2016.

D. Panda, J. C. Samuel, M. Massie, S. C. Feinstein, W. et al., Differential regulation of microtubule dynamics by three-and four-repeat tau: implications for the onset of neurodegenerative disease, Proc. Natl. Acad. Sci. U S A, vol.100, pp.9548-9553, 2003.

F. Paonessa, L. D. Evans, R. Solanki, D. Larrieu, S. Wray et al., Microtubules deform the nuclear membrane and disrupt nucleocytoplasmic transport in tau-mediated frontotemporal dementia, Cell Rep, vol.26, 2019.

L. Pecqueur, C. Duellberg, B. Dreier, Q. Jiang, C. Wang et al., A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end, Proc. Natl. Acad. Sci. U S A, vol.109, pp.12011-12016, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02121638

U. Preuss, J. Biernat, E. M. Mandelkow, and E. Mandelkow, The ''jaws'' model of tau-microtubule interaction examined in CHO cells, J. Cell Sci, vol.110, pp.789-800, 1997.

L. Qiang, X. Sun, T. O. Austin, H. Muralidharan, D. C. Jean et al., Tau does not stabilize axonal microtubules but rather enables them to have long labile domains, Curr. Biol, vol.28, pp.2181-2185, 2018.

S. Quraishe, C. M. Cowan, and A. Mudher, NAP (davunetide) rescues neuronal dysfunction in a Drosophila model of tauopathy, Mol. Psychiatry, vol.18, pp.834-842, 2013.

S. Quraishe, M. Sealey, L. Cranfield, and A. Mudher, Microtubule stabilising peptides rescue tau phenotypes in vivo, Sci. Rep, vol.6, p.38224, 2016.

H. Y. Qureshi, T. Li, R. Macdonald, C. M. Cho, N. Leclerc et al., Interaction of 14-3-3? with microtubule-associated protein tau within Alzheimer's disease neurofibrillary tangles, Biochemistry, vol.52, pp.6445-6455, 2013.

A. Ramkumar, B. Y. Jong, and K. M. Ori-mckenney, ReMAPping the microtubule landscape: how phosphorylation dictates the activities of microtubule-associated proteins, Dev. Dyn, vol.247, pp.138-155, 2018.

J. S. Rane, A. Kumari, and D. Panda, An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity by enhancing tau aggregation and inhibiting tubulin polymerization, Biochem. J, vol.476, pp.1401-1417, 2019.

A. Y. Roman, F. Devred, D. Byrne, R. La-rocca, N. N. Ninkina et al., Zinc induces temperature-dependent reversible self-assembly of tau, J. Mol. Biol, vol.431, pp.687-695, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01981683

K. J. Rosenberg, J. L. Ross, H. E. Feinstein, S. C. Feinstein, and J. Israelachvili, Complementary dimerization of microtubule-associated tau protein: implications for microtubule bundling and tau-mediated pathogenesis, Proc. Natl. Acad. Sci. U S A, vol.105, pp.7445-7450, 2008.

R. Rouzier, R. Rajan, P. Wagner, K. R. Hess, D. L. Gold et al., Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer, Proc. Natl. Acad. Sci. U S A, vol.102, pp.8315-8320, 2005.

N. Sahara, T. Tomiyama, and H. Mori, Missense point mutations of tau to segregate with FTDP-17 exhibit site-specific effects on microtubule structure in COS cells: a novel action of R406W mutation, J. Neurosci. Res, vol.60, pp.380-387, 2000.

R. A. Santarella, G. Skiniotis, K. N. Goldie, P. Tittmann, H. Gross et al., Surface-decoration of microtubules by human tau, J. Mol. Biol, vol.339, pp.539-553, 2004.

A. Schneider, J. Biernat, M. Von-bergen, E. Mandelkow, and E. M. Mandelkow, Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments, Biochemistry, vol.38, pp.3549-3558, 1999.

M. Schwalbe, H. Kadavath, J. Biernat, V. Ozenne, M. Blackledge et al., Structural impact of tau phosphorylation at threonine 231, Structure, vol.23, pp.1448-1458, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199230

M. Schwalbe, V. Ozenne, S. Bibow, M. Jaremko, L. Jaremko et al., Predictive atomic resolution descriptions of intrinsically disordered hTau40 and ?-synuclein in solution from NMR and small angle scattering, Structure, vol.22, pp.238-249, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131132

C. W. Scott, D. P. Blowers, P. T. Barth, M. M. Lo, A. I. Salama et al., Differences in the abilities of human tau isoforms to promote microtubule assembly, J. Neurosci. Res, vol.30, pp.154-162, 1991.

C. W. Scott, R. C. Spreen, J. L. Herman, F. P. Chow, M. D. Davison et al., Phosphorylation of recombinant tau by cAMP-dependent protein kinase. Identification of phosphorylation sites and effect on microtubule assembly, J. Biol. Chem, vol.268, pp.1166-1173, 1993.

M. Selenica, L. Benner, S. B. Housley, B. Manchec, D. C. Lee et al., Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition, Alzheimers Res. Ther, vol.6, p.12, 2014.

A. Sengupta, J. Kabat, M. Novak, Q. Wu, I. Grundke-iqbal et al., Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules, Arch. Biochem. Biophys, vol.357, pp.299-309, 1998.

V. Shashi, M. M. Magiera, D. Klein, M. Zaki, K. Schoch et al., Loss of tubulin deglutamylase CCP1 causes infantileonset neurodegeneration, EMBO J, vol.37, p.100540, 2018.

N. Sibille, I. Huvent, C. Fauquant, D. Verdegem, L. Amniai et al., Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein, Proteins, vol.80, pp.454-462, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00713027

A. Sillen, P. Barbier, I. Landrieu, S. Lefebvre, J. M. Wieruszeski et al., NMR investigation of the interaction between the neuronal protein tau and the microtubules, Biochemistry, vol.46, pp.3055-3064, 1920.
URL : https://hal.archives-ouvertes.fr/hal-00139673

M. Smoter, L. Bodnar, B. Grala, R. Stec, K. Zieniuk et al., Tau protein as a potential predictive marker in epithelial ovarian cancer patients treated with paclitaxel/platinum first-line chemotherapy, J. Exp. Clin. Cancer Res, vol.32, p.25, 2013.

A. Szyk, A. M. Deaconescu, J. Spector, B. Goodman, M. L. Valenstein et al., Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase, Cell, vol.157, pp.1405-1415, 2014.

P. Tompa and M. Fuxreiter, Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions, Trends Biochem. Sci, vol.33, pp.2-8, 2008.

B. Trinczek, J. Biernat, K. Baumann, E. M. Mandelkow, and E. Mandelkow, Domains of tau protein, differential phosphorylation and dynamic instability of microtubules, Mol. Biol. Cell, vol.6, pp.1887-1902, 1995.

P. O. Tsvetkov, R. La-rocca, S. Malesinski, and F. Devred, Characterization of microtubule-associated proteins (MAPs) and tubulin interactions by isothermal titration calorimetry (ITC), Methods Mol. Biol, pp.151-165, 1964.
URL : https://hal.archives-ouvertes.fr/hal-02088551

K. V. Tugaeva, P. O. Tsvetkov, and N. N. Sluchanko, Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction, PLoS One, vol.12, p.178933, 2017.

T. Umahara, T. Uchihara, K. Tsuchiya, A. Nakamura, T. Iwamoto et al., 14-3-3 proteins and ? isoform containing neurofibrillary tangles in patients with Alzheimer's disease, Acta Neuropathol, vol.108, pp.279-286, 2004.

B. Van-der-vaart, A. Akhmanova, and A. Straube, Regulation of microtubule dynamic instability, Biochem. Soc. Trans, vol.37, pp.1007-1013, 2009.

S. Wegmann, B. Eftekharzadeh, K. Tepper, K. M. Zoltowska, R. E. Bennett et al., Tau protein liquid-liquid phase separation can initiate tau aggregation, EMBO J, vol.37, p.98049, 2018.

M. D. Weingarten, A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner, A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. U S A, vol.72, pp.1858-1862, 1975.

K. C. Wilhelmsen, T. Lynch, E. Pavlou, M. Higgins, and T. G. Nygaard, Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22, Am. J. Hum. Genet, vol.55, pp.1159-1165, 1994.

G. B. Witman, D. W. Cleveland, M. D. Weingarten, and M. W. Kirschner, Tubulin requires tau for growth onto microtubule initiating sites, Proc. Natl. Acad. Sci. U S A, vol.73, pp.4070-4074, 1976.

Y. Xiong, K. Zhao, J. Wu, Z. Xu, S. Jin et al., HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila, Proc. Natl. Acad. Sci. U S A, vol.110, pp.4604-4609, 2013.

R. Zhang, G. M. Alushin, A. Brown, and E. Nogales, Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins, Cell, vol.162, pp.849-859, 2015.

B. Zhang, A. Maiti, S. Shively, F. Lakhani, G. Mcdonald-jones et al., Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model, Proc. Natl. Acad. Sci. U S A, vol.102, pp.227-231, 2005.

F. Zhang, B. Su, C. Wang, S. L. Siedlak, S. Mondragon-rodriguez et al., Posttranslational modifications of ?-tubulin in Alzheimer disease, Transl. Neurodegener, vol.4, p.9, 2015.

, Conflict of Interest Statement: The authors declare that the research was

©. Copyright, . Barbier, . Zejneli, . Martinho, . Lasorsa et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, 2019.