B. C. Arruda and R. J. Sension, Ultrafast Polyene Dynamics: the Ring Opening of 1,3-Cyclohexadiene Derivatives, Phys. Chem. Chem. Phys, vol.16, pp.4439-4455, 2014.

R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Angew. Chem. Int. Ed, vol.8, p.781, 1969.

W. T. Van-der-lugt and L. J. Oosterhoff, Symmetry Control and Photoinduced Reactions, J. Am. Chem. Soc, vol.91, pp.6042-6049, 1969.

S. Deb and P. M. Weber, The Ultrafast Pathway of Photon-Induced Electrocyclic RingOpening Reactions: The Case of 1,3-Cyclohexadiene, Annu. Rev. Phys. Chem, vol.62, pp.19-39, 2011.

S. A. Trushin, W. Fuß, T. Schikarski, W. E. Schmid, and K. L. Kompa, Femtosecond Photochemical Ring Opening of 1,3-Cyclohexadiene Studied by Time-Resolved IntenseField Ionization, J. Chem. Phys, vol.106, pp.9386-9389, 1997.

W. Fuß, W. E. Schmid, and S. A. Trushin, Time-Resolved Dissociative Intense-Laser Field Ionization for Probing Dynamics: Femtosecond Photochemical Ring Opening of 1,3-Cyclohexadiene, J. Chem. Phys, vol.112, pp.8347-8362, 2000.

M. Garavelli, C. S. Page, P. Celani, M. Olivucci, W. E. Schmid et al., Reaction Path of a sub-200 fs Photochemical Electrocyclic Reaction, J. Phys. Chem. A, vol.105, pp.4458-4469, 2001.

N. Kuthirummal, F. M. Rudakov, C. L. Evans, and P. M. Weber, Spectroscopy and Femtosecond Dynamics of the Ring Opening Reaction of 1,3-Cyclohexadiene, J. Chem. Phys, p.133307, 2006.

K. Kosma, S. A. Trushin, W. Fuß, and W. E. Schmid, Cyclohexadiene Ring Opening Observed with 13 fs Resolution: Coherent Oscillations Confirm the Reaction Path, Phys. Chem. Chem. Phys, vol.11, pp.172-181, 2009.

C. C. Pemberton, Y. Zhang, K. Saita, A. Kirrander, and P. Weber, From the (1B) Spectroscopic State to the Photochemical Product of the Ultrafast Ring-Opening of 1,3-Cyclohexadiene: A Spectral Observation of the Complete Reaction Path, J. Phys. Chem. A, vol.119, pp.8832-8845, 2015.

S. Adachi, M. Sato, and T. Suzuki, Direct Observation of Ground-State Product Formation in a 1,3-Cyclohexadiene Ring-Opening Reaction, J. Phys. Chem. Lett, vol.6, pp.343-346, 2015.

P. Celani, S. Ottani, M. Olivucci, F. Bernardi, and M. A. Robb, What Happens during the Picosecond Lifetime of 2A 1 Cyclohexa-l,3-diene? A CAS-SCF Study of the Cyclohexadiene/Hexatriene Photochemical Interconversion, J. Am. Chem. Soc, vol.116, pp.10141-10151, 1994.

P. Celani, F. Bernardi, M. A. Robb, and M. Olivucci, Do Photochemical Ring-Openings Occur in the Spectroscopic State? 1 B 2 Pathways for the Cyclohexadiene/Hexatriene

, Photochemical Interconversion. J. Phys. Chem, vol.100, pp.19364-19366, 1996.

M. Garavelli, P. Celani, M. Fato, M. J. Bearpark, B. R. Smith et al., Relaxation Paths from a Conical Intersection: The Mechanism of Product Formation in the Cyclohexadiene/Hexatriene Photochemical Interconversion, J. Phys. Chem. A, vol.101, pp.2023-2032, 1997.

M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein et al., Potential-Energy Surfaces for Ultrafast Photochemistry. Static and Dynamic Aspects, Faraday Discuss, vol.110, pp.51-70, 1998.

M. Merchán, L. Serrano-andrés, L. S. Slater, B. O. Roos, R. Mcdiarmid et al., Electronic Spectra of 1,4-Cyclohexadiene and 1,3-Cyclohexadiene: A Combined Experimental and Theoretical Investigation, J. Phys. Chem. A, vol.103, pp.5468-5476, 1999.

H. Tamura, S. Nanbu, H. Nakamura, and T. Ishida, A Theoretical Ttudy of Cyclohexadiene/Hexatriene Photochemical Interconversion: Multireference Configuration Interaction Potential Energy Surfaces and Transition Probabilities for the Radiationless Decays, Chem. Phys. Lett, vol.401, pp.487-491, 2005.

T. Mori and S. Kato, Dynamic Electron Correlation Effect on Conical Intersections in Photochemical Ring-Opening Reaction of Cyclohexadiene: MS-CASPT2 Study, Chem. Phys. Lett, vol.476, pp.97-100, 2009.

A. Nenov, P. Kölle, M. A. Robb, and R. De-vivie-riedle, Beyond the van der Lugt/Oosterhoff Model: When the Conical Intersection Seam and the S 1 Minimum Energy Path Do Not Cross, J. Org. Chem, vol.75, pp.123-129, 2010.

A. Hofmann and R. De-vivie-riedle, Quantum Dynamics of Photoexcited Cyclohexadiene Introducing Reactive Coordinates, J. Chem. Phys, vol.112, pp.5054-5059, 2000.

A. Hofmann and R. De-vivie-riedle, Adiabatic Approach for Ultrafast Quantum Dynamics Mediated by Simultaneously Active Conical Intersections, Chem. Phys. Lett, vol.346, pp.299-304, 2001.

H. Tamura, S. Nanbu, T. Ishida, and H. Nakamura, Ab Initio Nonadiabatic Quantum Dynamics of Cyclohexadiene/Hexatriene Ultrafast Photoisomerization, J. Chem. Phys, vol.124, p.84313, 2006.

J. B. Schönborn, J. Sielk, and B. Hartke, Photochemical Ring-Opening of Cyclohexadiene: Quantum Wavepacket Dynamics on a Global Ab Initio Potential Energy Surface, J. Phys. Chem. A, vol.114, pp.4036-4044, 2010.

A. Li, S. Yuan, Y. Dou, Y. Wang, and Z. Wen, Semiclassical Dynamic Simulation of Photon Induced Ring-Opening of Cyclohexadiene to Hexatriene, Chem. Phys. Lett, vol.478, pp.28-32, 2009.

E. Tapavicza, A. M. Meyer, and F. Furche, Unravelling the Details of Vitamin D Photosynthesis by Non-Adiabatic Molecular Dynamics Simulations, Phys. Chem. Chem. Phys, vol.13, pp.20986-20998, 2011.

J. Kim, H. Tao, T. J. Martinez, and P. Bucksbaum, Ab Initio Multiple Spawning on LaserDressed States: A Study of 1,3-Cyclohexadiene Photoisomerization via Light-Induced Conical Intersections, J. Phys. B: At. Mol. Opt. Phys, p.164003, 2015.

A. Ohta, O. Kobayashi, S. O. Danielache, and S. Nanbu, Nonadiabatic ab Initio Molecular Dynamics of Photoisomerization Reaction between 1,3-Cyclohexadiene and 1,3,5-cisHexatriene, Chem. Phys, vol.459, pp.45-53, 2015.

O. Schalk, T. Geng, T. Thompson, N. Baluyot, R. D. Thomas et al., Cyclohexadiene Revisited: A Time-Resolved Photoelectron Spectroscopy and ab Initio Study, J. Phys. Chem. A, vol.120, pp.2320-2329, 2016.

Y. Lei, H. Wu, X. Zheng, G. Zhai, and C. Zhu, 3-Cyclohexadiene Ring Opening Reaction: Ab Initio on-the-fly Nonadiabatic Molecular Dynamics Simulation, vol.1

, J. Photochem. Photobiol. A, vol.317, pp.39-49, 2016.

M. Filatov, S. K. Min, and K. S. Kim, Non-Adiabatic Dynamics of Ring Opening in Cyclohexa-1,3-diene Described by an Ensemble Density-Functional Theory Method

, Mol. Phys, 2018.

M. P. Minitti, J. M. Budarz, A. Kirrander, J. Robinson, T. J. Lane et al., Toward Structural Femtosecond Chemical Dynamics: Imaging Chemistry in Space and Time. Faraday Discuss, vol.171, pp.81-91, 2014.

M. P. Minitti, J. M. Budarz, A. Kirrander, J. S. Robinson, D. Ratner et al., Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction, Phys. Rev. Lett, p.255501, 2015.

T. J. Wolf, D. M. Sanchez, J. Yang, R. M. Parrish, J. P. Nunes et al., The Photochemical Ring-Opening of 1,3-Cyclohexadiene Imaged by Ultrafast Electron Diffraction, Nat. Chem, 2019.

A. R. Attar, A. Bhattacherjee, C. D. Pemmaraju, K. Schnorr, K. D. Closser et al., Femtosecond X-ray Spectroscopy of an Electrocyclic RingOpening Reaction, vol.356, pp.54-59, 2017.

R. Iikubo, T. Sekikawa, Y. Harabuchi, and T. Taketsugu, Structural Dynamics of Photochemical Reactions Probed by Time-Resolved Photoelectron Spectroscopy Using High Harmonic Pulses, Faraday Discuss, vol.194, pp.147-160, 2016.

K. Kaneshima, Y. Ninota, and T. Sekikawa, Time-Resolved High-Harmonic Spectroscopy of Ultrafast Photoisomerization Dynamics, Opt. Express, vol.26, pp.31039-31054, 2018.

N. G. Minnaard and E. Havinga, Some Aspects of the Solution Photochemistry of 1,3-Cyclohexadiene, (Z)-and (E)-1,3,5-Hexatriene, Recl. Trav. Chim. Pays-Bas, vol.92, pp.1315-1320, 1973.

C. Ruan, V. A. Lobastov, R. Srinivasan, B. M. Goodson, H. Ihee et al., Ultrafast Diffraction and Structural Dynamics: The Nature of Complex Molecules Far from Equilibrium, Proc. Natl. Acad. Sci, vol.98, pp.7117-7122, 2001.

R. C. Dudek and P. M. Weber, Ultrafast Diffraction Imaging of the Electrocyclic RingOpening Reaction of 1,3-Cyclohexadiene, J. Phys. Chem. A, vol.105, pp.4167-4171, 2001.

J. L. White, J. Kim, V. S. Petrovi?, and P. H. Bucksbaum, Ultrafast Ring Opening in 1,3-Cyclohexadiene Investigated by Simplex-Based Spectral Unmixing, J. Chem. Phys, vol.136, p.54303, 2012.

M. Kotur, T. Weinacht, B. J. Pearson, and S. Matsika, Closed-Loop Learning Control of Isomerization Using Shaped Ultrafast Laser Pulses in the Deep Ultraviolet, J. Chem. Phys, p.134311, 2009.

T. Tian, T. Xu, S. R. Kirk, M. Filatov, and S. Jenkins, Next-Generation Quantum Theory of Atoms in Molecules for the Ground and Excited State of the Ring-Opening of Cyclohexadiene, Int. J. Quant. Chem, 2018.

V. Santolini, J. P. Malhado, M. A. Robb, M. Garavelli, and M. J. Bearpark, Photochemical Reaction Paths of cis-Dienes Studied with RASSCF: The Changing Balance Between Ionic and Covalent Excited States, Mol. Phys, vol.113, pp.1978-1990, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234568

J. Kim, H. Tao, J. L. White, V. S. Petrovi?, T. J. Martinez et al., Control of 1,3-Cyclohexadiene Photoisomerization Using Light-Induced Conical Intersections, J. Phys. Chem. A, vol.116, pp.2758-2763, 2012.

H. Tao, First Principles Molecular Dynamics and Control of Photochemical Reactions, 2011.

J. W. Park and T. Shiozaki, Analytical Derivative Coupling for Multistate CASPT2 Theory, J. Chem. Theory Comput, vol.13, pp.2561-2570, 2017.

J. W. Park and T. Shiozaki, On-the-Fly CASPT2 Surface-Hopping Dynamics, J. Chem. Theory Comput, vol.13, pp.3676-3683, 2017.

. Shiozaki, . Toru, and . Bagel, Brilliantly Advanced General Electronic-structure Library

T. Shiozaki, BAGEL : Brilliantly Advanced General Electronic-structure Library, WIREs Comput. Mol. Sci, 1331.

B. O. Roos and K. Andersson, Multiconfigurational Perturbation Theory with Level Shift -the Cr 2 Potential Revisited, Chem. Phys. Lett, vol.245, pp.215-223, 1995.

T. H. Dunning, Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen, J. Chem. Phys, vol.90, pp.1007-1023, 1989.

M. J. Bearpark, M. A. Robb, and H. B. Schlegel, A Direct Method for the Location of the Lowest Energy Point on a Potential Surface Crossing, Chem. Phys. Lett, vol.223, pp.269-274, 1994.

M. Barbatti, M. Ruckenbauer, F. Plasser, J. Pittner, G. Granucci et al., Lischka, H. Newton-X: A Surface-Hopping Program for Nonadiabatic Molecular Dynamics, WIREs: Comp. Mol. Sci, vol.4, pp.26-33, 2014.

M. Barbatti, G. Granucci, M. Ruckenbauer, F. Plasser, R. Crespootero et al., NEWTON-X: A Package for Newtonian Dynamics Close to the Crossing Seam, 2016.

R. Crespo-otero and M. Barbatti, Spectrum Simulation and Decomposition with Nuclear Ensemble: Formal Derivation and Application to Benzene

, Theor. Chem. Acc, vol.131, p.1237, 2012.

G. Granucci and M. Persico, Critical Appraisal of the Fewest Switches Algorithm for Surface Hopping, J. Chem. Phys, p.134114, 2007.

J. C. Tully, Molecular Dynamics with Electronic Transitions, J. Chem. Phys, vol.93, pp.1061-1071, 1990.

S. Nangia, A. W. Jasper, I. Miller, T. F. Truhlar, and D. G. , Army Ants Algorithm for Rare Event Sampling of Delocalized Nonadiabatic Transitions by Trajectory Surface Hopping and the Estimation of Sampling Errors by the Bootstrap Method, J. Chem. Phys, vol.120, pp.3586-3597, 2004.

L. Yue, L. Yu, C. Xu, Y. Lei, Y. Liu et al., Benchmark Performance of Global Switching versus Local Switching for Trajectory Surface Hopping Molecular Dynamics

M. Tudorovskaya, R. S. Minns, and A. Kirrander, Effect of Probe Energy and Competing Pathways on Time-Resolved Photoelectron Spectroscopy: The Ring-Opening Reaction of 1,3-Cyclohexadiene, Phys. Chem. Chem. Phys, vol.20, pp.17714-17726, 2018.