Insect inspired visual motion sensing and flying robots - Archive ouverte HAL Access content directly
Book Sections Year : 2014

Insect inspired visual motion sensing and flying robots

(1, 2) , (1, 2) , (1, 2) , (1, 2) , (1, 2) , (1, 3) , (1, 3) , (1, 3)
1
2
3

Abstract

Flying insects excellently master visual motion sensing techniques. They use dedicated motion processing circuits at a low energy and computational costs. Thanks to observations obtained on insect visual guidance, we developed visual motion sensors and bio-inspired autopilots dedicated to flying robots. Optic flow-based visuomotor control systems have been implemented on an increasingly large number of sighted autonomous robots. In this chapter, we present how we designed and constructed local motion sensors and how we implemented bio-inspired visual guidance scheme on-board several micro-aerial vehicles. An hyperacurate sensor in which retinal micro-scanning movements are performed via a small piezo-bender actuator was mounted onto a miniature aerial robot. The OSCAR II robot is able to track a moving target accurately by exploiting the microscan-ning movement imposed to its eye's retina. We also present two interdependent control schemes driving the eye in robot angular position and the robot's body angular position with respect to a visual target but without any knowledge of the robot's orientation in the global frame. This "steering-by-gazing" control strategy, which is implemented on this lightweight (100 g) miniature sighted aerial robot, demonstrates the effectiveness of this biomimetic visual/inertial heading control strategy.
Fichier principal
Vignette du fichier
2014-Raharijaona et al. hdbk biomimetics bioinspiration chapter - preprint final.pdf (5.77 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02294399 , version 1 (23-09-2019)

Identifiers

Cite

Thibaut Raharijaona, Lubin Kerhuel, Julien Serres, Frédéric Roubieu, Fabien Expert, et al.. Insect inspired visual motion sensing and flying robots. Handbook of Biomimetics and Bioinspiration: 2 Electromechanical Systems, 2014, 978-981-435-4950. ⟨10.1142/9789814354936_0022⟩. ⟨hal-02294399⟩
53 View
177 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More