A. R. Tan and S. M. Swain, Therapeutic strategies for triple-negative breast cancer, Cancer J, vol.14, pp.343-51, 2008.

K. Chang, I. Pastan, and M. C. Willingham, Frequent expression of the tumor antigen CAK1 in squamous-cell carcinomas, Int J Cancer, vol.51, pp.548-54, 1992.

N. E. Timmins and L. K. Nielsen, Generation of multicellular tumor spheroids by the hanging-drop method, Methods Mol Med, vol.140, pp.141-51, 2007.

C. Sapede, A. Gauvrit, I. Barbieux, M. Padieu, L. Cellerin et al., Aberrant splicing and protease involvement in mesothelin release from epithelioid mesothelioma cells, Cancer Sci, vol.99, pp.590-594, 2008.

T. K. Bera and I. Pastan, Mesothelin is not required for normal mouse development or reproduction, Mol Cell Biol, vol.20, pp.2902-2908, 2000.

R. Hassan, A. Thomas, C. Alewine, D. T. Le, E. M. Jaffee et al., Mesothelin immunotherapy for cancer: ready for prime time?, J Clin Oncol, vol.34, pp.4171-4180, 2016.

Z. Tang, M. Qian, and M. Ho, The role of mesothelin in tumor progression and targeted therapy, Anticancer Agents Med Chem, vol.13, pp.276-80, 2013.

N. Uehara, Y. Matsuoka, and A. Tsubura, Mesothelin promotes anchorageindependent growth and prevents anoikis via extracellular signal-regulated kinase signaling pathway in human breast cancer cells, Mol Cancer Res, vol.6, pp.186-93, 2008.

E. L. Servais, C. Colovos, L. Rodriguez, A. J. Bograd, J. Nitadori et al., Mesothelin overexpression promotes mesothelioma cell invasion and MMP-9 secretion in an orthotopic mouse model and in epithelioid pleural mesothelioma patients, Clin Cancer Res, vol.18, pp.2478-89, 2012.

J. A. Gubbels, J. Belisle, M. Onda, C. Rancourt, M. Migneault et al., Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors, Mol Cancer, vol.5, p.50, 2006.

S. H. Chen, W. C. Hung, P. Wang, C. Paul, and K. Konstantopoulos, Mesothelin binding to CA125/MUC16 promotes pancreatic cancer cell motility and invasion via MMP-7 activation, Sci Rep, vol.3, p.1870, 2013.

K. Tan, K. Kajino, S. Momose, A. Masaoka, K. Sasahara et al., Mesothelin (MSLN) promoter is hypomethylated in malignant mesothelioma, but its expression is not associated with methylation status of the promoter, Hum Pathol, vol.41, pp.1330-1338, 2010.

M. G. Prieve and R. T. Moon, Stromelysin-1 and mesothelin are differentially regulated by Wnt-5a and Wnt-1 in C57mg mouse mammary epithelial cells, BMC Dev Biol, vol.3, issue.2, 2003.

X. Y. Zhao, B. Subramanyam, N. Sarapa, S. Golfier, and H. Dinter, Novel antibody therapeutics targeting mesothelin in solid tumors, Clin Cancer Drugs, vol.3, pp.76-86, 2016.

K. Watanabe, Y. Luo, T. Da, S. Guedan, M. Ruella et al., Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses, JCI Insight, vol.3, p.99573, 2018.

P. Baldo and S. Cecco, Amatuximab and novel agents targeting mesothelin for solid tumors, Onco Targets Ther, vol.10, pp.5337-53, 2017.

J. Tchou, L. C. Wang, B. Selven, H. Zhang, J. Conejo-garcia et al., Breast Cancer Res Treat, vol.133, pp.799-804, 2012.

G. Tozbikian, E. Brogi, K. Kadota, J. Catalano, M. Akram et al., Mesothelin expression in triple negative breast carcinomas correlates significantly with basal-like phenotype, distant metastases and decreased survival, PLoS ONE, vol.9, p.114900, 2014.

Y. R. Li, R. R. Xian, A. Ziober, J. Conejo-garcia, A. Perales-puchalt et al., Mesothelin expression is associated with poor outcomes in breast cancer, Breast Cancer Res Treat, vol.147, pp.675-84, 2014.

I. V. Bayoglu, B. B. Kucukzeybek, Y. Kucukzeybek, U. Varol, I. Yildiz et al., Prognostic value of mesothelin expression in patients with triple negative and HER2-positive breast cancers, Biomed Pharmacother, vol.70, pp.190-195, 2015.

C. Rozan, A. Cornillon, C. Petiard, M. Chartier, G. Behar et al., Single-domain antibody-based and linker-free bispecific antibodies targeting FcgammaRIII induce potent antitumor activity without recruiting regulatory T cells, Mol Cancer Ther, vol.12, pp.1481-91, 2013.

M. Turini, P. Chames, P. Bruhns, D. Baty, and B. Kerfelec, A FcgammaRIIIengaging bispecific antibody expands the range of HER2-expressing breast tumors eligible to antibody therapy, Oncotarget, vol.5, pp.5304-5323, 2014.

A. M. Prantner, M. Turini, B. Kerfelec, S. Joshi, D. Baty et al., Anti-mesothelin nanobodies for both conventional and nanoparticlebased biomedical applications, J Biomed Nanotechnol, vol.11, pp.1201-1213, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01450786

G. Behar, S. Siberil, A. Groulet, P. Chames, M. Pugniere et al., Isolation and characterization of anti-FcgammaRIII (CD16) llama singledomain antibodies that activate natural killer cells, Protein Eng Des Sel, vol.21, pp.1-10, 2008.

J. Friedrich, C. Seidel, R. Ebner, and L. A. Kunz-schughart, Spheroid-based drug screen: considerations and practical approach, Nat Protoc, vol.4, pp.309-333, 2009.

N. Vidula and A. Bardia, Targeted therapy for metastatic triple negative breast cancer: the next frontier in precision oncology, Oncotarget, vol.8, pp.106167-106175, 2017.

K. Wang, V. Bodempudi, Z. Liu, E. Borrego-diaz, F. Yamoutpoor et al., Inhibition of mesothelin as a novel strategy for targeting cancer cells, PLoS ONE, vol.7, p.33214, 2012.

R. J. Kelly, S. E. Pastan, I. Hassan, and R. , Mesothelin-targeted agents in clinical trials and in preclinical development, Mol Cancer Ther, vol.11, pp.517-542, 2012.

P. Meijnen, J. L. Peterse, N. Antonini, E. J. Rutgers, and M. J. Van-de-vijver, Immunohistochemical categorisation of ductal carcinoma in situ of the breast, Br J Cancer, vol.98, pp.137-179, 2008.

H. Li, Z. Qiu, F. Li, and C. Wang, The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis, Oncol Lett, vol.14, pp.5865-70, 2017.

C. Mehner, A. Hockla, E. Miller, S. Ran, D. C. Radisky et al., Tumor cellproduced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer, Oncotarget, vol.5, pp.2736-2785, 2014.

F. Hirschhaeuser, S. Walenta, and W. Mueller-klieser, Efficacy of catumaxomab in tumor spheroid killing is mediated by its trifunctional mode of action, Cancer Immunol Immunother, vol.59, pp.1675-84, 2010.

L. A. Kunz-schughart, M. Kreutz, and R. Knuechel, Multicellular spheroids: a threedimensional in vitro culture system to study tumour biology, Int J Exp Pathol, vol.79, pp.1-23, 1998.

T. Bruns, S. Schickinger, R. Wittig, and H. Schneckenburger, Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy, J Biomed Opt, vol.17, p.101518, 2012.

F. Pampaloni, N. Ansari, and E. H. Stelzer, High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy, Cell Tissue Res, vol.352, pp.161-77, 2013.

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, R. H. Singer et al., Efficient Bayesian-based multiview deconvolution, Nat Methods, vol.11, pp.645-653, 2014.

J. Deguine and P. Bousso, Dynamics of NK cell interactions in vivo, Immunol Rev, vol.251, pp.154-163, 2013.

R. Bhat and C. Watzl, Serial killing of tumor cells by human natural killer cells-enhancement by therapeutic antibodies, PLoS ONE, vol.2, p.326, 2007.

A. De-maria, F. Bozzano, C. Cantoni, and L. Moretta, Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation, Proc Natl Acad Sci, vol.108, pp.728-760, 2011.

S. Raab, J. Steinbacher, B. J. Schmiedel, P. C. Kousis, A. Steinle et al., Fcoptimized NKG2D-Fc constructs induce NK cell antibody-dependent cellular cytotoxicity against breast cancer cells independently of HER2/neu expression status, Cold Spring Harb Perspect Biol, vol.193, p.28480, 2014.

C. Fauriat, E. O. Long, H. G. Ljunggren, and Y. T. Bryceson, Regulation of human NKcell cytokine and chemokine production by target cell recognition, Blood, vol.115, pp.2167-76, 2010.

E. Zervos, S. Agle, A. G. Freistaedter, G. J. Jones, and R. L. Roper, Murine mesothelin: characterization, expression, and inhibition of tumor growth in a murine model of pancreatic cancer, J Exp Clin Cancer Res, vol.35, p.39, 2016.

W. H. Yeap, K. L. Wong, N. Shimasaki, E. C. Teo, J. K. Quek et al., CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes, Sci Rep, vol.6, p.34310, 2016.

J. Golay, R. Valgardsdottir, G. Musaraj, D. Giupponi, O. Spinelli et al., Human neutrophils express low levels of FcgammaRIIIA, which plays a role in PMN activation, Blood, vol.133, pp.1395-405, 2019.

J. Pahl, J. Koch, J. J. Gotz, A. Arnold, U. Reusch et al., CD16A activation of NK cells promotes NK cell proliferation and memory-like cytotoxicity against cancer cells, Cancer Immunol Res, vol.6, pp.517-544, 2018.

J. Stieglmaier, J. Benjamin, and D. Nagorsen, Utilizing the BiTE (bispecific T-cell engager) platform for immunotherapy of cancer, Expert Opin Biol Ther, vol.15, pp.1093-1102, 2015.

L. J. Holt, A. Basran, K. Jones, J. Chorlton, L. S. Jespers et al., Antiserum albumin domain antibodies for extending the half-lives of short lived drugs, Protein Eng Des Sel, vol.21, pp.283-291, 2008.

D. Legland, I. Arganda-carreras, and A. P. , MorphoLibJ: integrated library and plugins for mathematical morphology with, ImageJ. Bioinformatics, vol.32, pp.3532-3536, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438611