P. John, Ethylene biosynthesis: the role of 1-aminocyclopropane-1-carboxylate (ACC) oxidase, and its possible evolutionary origin, Physiologia Plantarum, vol.100, issue.3, pp.583-592, 1997.

A. B. Bleecker and H. Kende, Ethylene: a gaseous signal molecule in plant, Annual Review of Cell and Developmental Biology, vol.16, pp.1-18, 2000.

Z. Zhang, J. Ren, I. J. Clifton, and C. J. Schofield, Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase-the ethylene-forming enzyme, Chemistry & Biology, vol.11, issue.10, pp.1383-1394, 2004.

A. M. Rocklin, D. L. Tierney, and V. Kofman, Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene, Proceedings of the National Academy of Sciences of the United States of America, vol.96, issue.14, pp.7905-7909, 1999.

D. L. Tierney, A. M. Rocklin, J. D. Lipscomb, L. Que, and B. M. Hoffman, ENDOR studies of the ligation and structure of the non-heme iron site in ACC oxidase, Journal of the American Chemical Society, vol.127, issue.19, pp.7005-7013, 2005.

J. Zhou, A. M. Rocklin, J. D. Lipscomb, L. Que, and E. I. Solomon, Spectroscopic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: molecular mechanism and CO 2 activation in the biosynthesis of ethylene, Journal of the American Chemical Society, vol.124, issue.17, pp.4602-4609, 2002.

A. M. Rocklin, K. Kato, H. Liu, L. Que, and J. D. Lipscomb, Mechanistic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: single turnover reaction, Journal of Biological Inorganic Chemistry, vol.9, issue.2, pp.171-182, 2004.

M. Costas, M. P. Mehn, M. P. Jensen, and L. Que, Dioxygen activation at mononuclear nonheme iron active Wadih Ghattas et al. 9 sites: enzymes, models, and intermediates, Chemical Reviews, vol.104, issue.2, pp.939-986, 2004.

R. M. Adlington, J. E. Baldwin, and B. J. Rawlings, On the stereochemistry of ethylene biosynthesis, Journal of the Chemical Society, issue.6, pp.290-292, 1983.

J. E. Baldwin, D. A. Jackson, R. M. Adlington, and B. J. Rawlings, The stereochemistry of oxidation of 1-aminocyclopropanecarboxylic acid, Journal of the Chemical Society, issue.4, pp.206-207, 1985.

Y. Nishida, T. Akamatsu, T. Ishii, and Y. Oda, Evolution of ethylene from 1-aminocyclopropanecarboxylic acid by binuclear iron(III)-peroxide adducts, Journal of the Chemical Society, issue.6, pp.496-497, 1992.

T. Kobayashi, Y. Sasaki, and T. Akamatsu, Non-enzymatic RNA hydrolysis promoted by the combined catalytic activity of buffers and magnesium ions, Zeitschrift für Naturforschung, vol.54, pp.534-541, 1999.

F. H. Allen, The cambridge structural database: a quarter of a million crystal structures and rising, Acta Crystallographica B, vol.58, issue.1, pp.380-388, 2002.

W. Ghattas, C. Gaudin, M. Giorgi, A. Rockenbauer, A. J. Simaan et al., ACC-oxidase like activity of a copper (II)-ACC complex in the presence of hydrogen peroxide. Detection of a reaction intermediate at low temperature, Chemical Communications, issue.9, pp.1027-1029, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02096709

N. Juda? and N. Raos, Self-assembly of cis and trans forms of the copper(II) complex with 1-aminocyclopropane-1-carboxylate into discrete trimers in the solid state, Inorganic Chemistry, vol.45, issue.13, pp.4892-4894, 2006.

A. Rockenbauer and L. Korecz, Automatic computer simulations of ESR spectra, Applied Magnetic Resonance, vol.10, issue.1-3, pp.29-43, 1996.

M. C. Pirrung, Ethylene biosynthesis. 8. Structural and theoretical studies, Journal of Organic Chemistry, vol.52, issue.19, pp.4179-4184, 1987.

G. Valle, M. Crisma, and C. Toniolo, Crystallographic characterization of conformation of 1-aminocyclopropane-1-carboxylic acid residue (Ac3c) in simple derivatives and peptides, International Journal of Peptide and Protein Research, vol.34, issue.1, pp.56-65, 1989.

K. Aoki and H. Yamazaki, Crystal structure of the 1-aminocyclopropanecarboxylate-pyridoxal Schiff base complex of copper(II): a model for a Schiff base intermediate in ethylene biosynthesis, Journal of the Chemical Society, Chemical Communication, issue.16, pp.1241-1242, 1987.

K. Aoki, N. Hu, and H. Yamazaki, X-ray studies on metal ion interactions with vitamins II. Crystal structures of three copper(II) and nickel(II) complexes of Schiff bases formed between 1-aminocyclopropanecarboxylic acid and pyridoxal or pyridoxal 5 -phosphate, Inorganica Chimica Acta, vol.186, issue.2, pp.253-261, 1991.

W. Ghattas,

P. Capdevielle and M. Maumy, A new oxidizing copper reagent : Cu? 2 H preparation and preliminary study of reactivity, Tetrahedron Letters, vol.31, issue.27, pp.3891-3892, 1990.

L. M. Mirica, X. Ottenwaelder, and T. D. Stack, Structure and spectroscopy of copper-dioxygen complexes, Chemical Reviews, vol.104, issue.2, pp.1013-1046, 2004.

J. M. Dunwell, A. Purvis, and S. Khuri, Cupins: the most functionally diverse protein superfamily, Phytochemistry, vol.65, issue.1, pp.7-17, 2004.

J. M. Dunwell, A. Culham, C. E. Carter, C. R. Sosa-aguirre, and P. W. Goodenough, Evolution of functional diversity in the cupin superfamily, Trends in Biochemical Sciences, vol.26, issue.12, pp.740-746, 2001.

B. M. Barney, M. R. Schaab, R. Lobrutto, and W. A. Francisco, Evidence for a new metal in a known active site: purification and characterization of an iron-containing quercetin 2,3-dioxygenase from Bacillus subtilis, Protein Expression and Purification, vol.35, issue.1, pp.131-141, 2004.

M. R. Schaab, B. M. Barney, and W. A. Francisco, Kinetic and spectroscopic studies on the quercetin 2,3-dioxygenase from Bacillus subtilis, Biochemistry, vol.45, issue.3, pp.1009-1016, 2006.

I. M. Kooter, R. A. Steiner, B. W. Dijkstra, P. I. Van-noort, M. R. Egmond et al., EPR characterization of the mononuclear Cu-containing Aspergillus japonicus quercetin 2,3-dioxygenase reveals dramatic changes upon anaerobic binding of substrates, European Journal of Biochemistry, vol.269, issue.12, pp.2971-2979, 2002.