S. Åkesson and A. Hedenström, How migrants get there: migratory performance and orientation, AIBS Bulletin, vol.57, issue.2, pp.123-133, 2007.

T. Alerstam, Bird migration, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00697238

T. Alerstam and S. Pettersson, Do birds use waves for orientation when migrating across the sea?, Nature, vol.259, issue.5540, pp.205-207, 1976.

D. L. Altshuler and M. Srinivasan, Comparison of visually guided flight in insects and birds, Frontiers in neuroscience, vol.12, p.19, 2018.

C. V. Baker, P. O'neill, and R. B. Mccole, Lateral line, otic and epibranchial placodes: developmental and evolutionary links, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol.310, issue.4, pp.370-383, 2008.

F. Beaufort, Beaufort wind scale. British Rea-Admiral, 1805.

P. S. Bhagavatula, C. Claudianos, M. R. Ibbotson, and M. V. Srinivasan, Optic flow cues guide flight in birds, Current Biology, vol.21, issue.21, pp.1794-1799, 2011.

R. Blake, A model of foraging efficiency and daily energy budget in the black skimmer (rynchops nigra), Canadian journal of zoology, vol.63, issue.1, pp.42-48, 1985.

W. Bouten, E. W. Baaij, J. Shamoun-baranes, and K. C. Camphuysen, A flexible gps tracking system for studying bird behaviour at multiple scales, Journal of Ornithology, vol.154, issue.2, pp.571-580, 2013.

C. W. Breuner, R. S. Sprague, S. H. Patterson, and H. A. Woods, Environment, behavior and physiology: do birds use barometric pressure to predict storms, Journal of Experimental Biology, vol.216, issue.11, pp.1982-1990, 2013.

J. C. Coulson, C. S. Thomas, J. E. Butterfield, N. Duncan, P. Monaghan et al., The use of head and bill length to sex live gulls laridae, Ibis, vol.125, issue.4, pp.549-557

M. Davies and P. Green, Optic flow-field variables trigger landing in hawk but not in pigeons, Naturwissenschaften, vol.77, issue.3, pp.142-144, 1990.

M. Davies and P. Green, Multiple sources of depth information: an ecological approach. In Perception and motor control in birds, pp.339-356, 1994.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli et al., The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, vol.137, issue.656, pp.553-597, 2011.

S. Dodge, G. Bohrer, R. Weinzierl, S. C. Davidson, R. Kays et al., The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data, Movement Ecology, vol.1, issue.1, 2013.

M. Emond, R. Mcneil, T. Cabana, C. Guerra, and P. Lachapelle, Comparing the retinal structures and functions in two species of gulls (larus delawarensis and larus modestus) with significant nocturnal behaviours, Vision research, vol.46, issue.18, pp.2914-2925, 2006.

H. Esch and J. Burns, Distance estimation by foraging honeybees, Journal of Experimental Biology, vol.199, issue.1, pp.155-162, 1996.

T. J. Evans, Across landscapes and seascapes : The movement ecology of diving and flying guillemots and gulls during breeding, 2017.

N. Franceschini, F. Ruffier, and J. Serres, A bio-inspired flying robot sheds light on insect piloting abilities, Current Biology, vol.17, issue.4, pp.329-335, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02295687

J. J. Gibson, The senses considered as perceptual systems, 1966.

B. Goller and D. L. Altshuler, Hummingbirds control hovering flight by stabilizing visual motion, Proceedings of the National Academy of Sciences, vol.111, issue.51, p.380, 2014.

C. H. Greenewalt, Dimensional relationships for flying animals, Smithsonian miscellaneous collections, vol.144, pp.1-46, 1962.

D. R. Griffin, The physiology and geophysics of bird navigation, The Quarterly Review of Biology, vol.44, issue.3, pp.255-276, 1969.

R. Griffiths, M. C. Double, K. Orr, and R. J. Dawson, A DNA test to sex most birds, Molecular Ecology, vol.7, issue.8, pp.1071-1075, 1998.

A. Hedenström, Twenty-three testable predictions about bird flight, Avian migration, pp.563-582, 2003.

A. Hedenström and S. Åkesson, Adaptive airspeed adjustment and compensation for wind drift in the common swift: Differences between day and night, Animal Behaviour, vol.127, pp.117-123, 2017.

A. Hedenstrom and T. Alerstam, Optimal flight speed of birds, Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol.348, pp.471-487, 1326.

M. K. Heerenbrink, L. Johansson, and A. Hedenström, Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight, Proceedings of the Royal Society A, vol.471, p.952, 2015.

H. Heran and M. Lindauer, Windkompensation und seitenwindkorrektur der bienen beim flug über wasser, Zeitschrift für vergleichende Physiologie, vol.47, issue.1, pp.39-55, 1963.

R. I. Holbrook and T. B. De-perera, Fish navigation in the vertical dimension: can fish use hydrostatic pressure to determine depth?, Fish and Fisheries, vol.12, issue.4, pp.370-379, 2011.

S. Hsu, E. A. Meindl, and D. B. Gilhousen, Determining the power-law wind-profile exponent under near-neutral stability conditions at sea, Journal of Applied Meteorology, vol.33, issue.6, pp.757-765, 1994.

J. S. Irwin, A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability, Atmospheric Environment, vol.13, issue.1, pp.191-194, 1967.

N. Isaksson, T. J. Evans, J. Shamoun-baranes, and S. Åkesson, Land or sea? Foraging area choice during breeding by an omnivorous gull, Movement Ecology, vol.4, 2016.

G. Katzir, E. Schechtman, N. Carmi, and D. Weihs, Head stabilization in herons, Journal of Comparative Physiology A, vol.187, issue.6, pp.423-432, 2001.

Y. Kogure, K. Sato, Y. Watanuki, S. Wanless, and F. Daunt, European shags optimize their flight behavior according to wind conditions, Journal of Experimental Biology, vol.219, issue.3, pp.311-318, 2016.

M. L. Kreithen and W. T. Keeton, Detection of changes in atmospheric pressure by the homing pigeon, columba livia, Journal of comparative physiology, vol.89, issue.1, pp.73-82, 1974.

N. Kudryavtseva and T. Soomere, Satellite altimetry reveals spatial patterns of variations in the baltic sea wave climate, 2017.

D. N. Lee and H. Kalmus, The optic flow field: the foundation of vision, Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol.290, pp.169-179, 1038.

D. N. Lee and P. E. Reddish, Plummeting gannets: a paradigm of ecological optics, Nature, vol.293, issue.5830, pp.293-294, 1981.

D. N. Lee, P. E. Reddish, and D. Rand, Aerial docking by hummingbirds, Naturwissenschaften, vol.78, issue.11, pp.526-527, 1991.

F. Liechti, Birds: blowin? by the wind, Journal of Ornithology, vol.147, issue.2, pp.202-211, 2006.

G. R. Martin, What is binocular vision for? a birds' eye view, Journal of Vision, vol.9, issue.11, pp.14-14, 2009.

G. R. Martin, Understanding bird collisions with man-made objects: a sensory ecology approach, Ibis, vol.153, issue.2, pp.239-254, 2011.

G. R. Martin, The sensory ecology of birds, 2017.

G. R. Martin, R. Mcneil, and L. M. Rojas, Vision and the foraging technique of skimmers (rynchopidae), Ibis, vol.149, issue.4, pp.750-757, 2007.

J. D. Mclaren, J. Shamoun-baranes, C. Camphuysen, and W. Bouten, Directed flight and optimal airspeeds: homeward-bound gulls react flexibly to wind yet fly slower than predicted, Journal of Avian Biology, vol.47, issue.4, pp.476-490, 2016.

M. Mitkus, G. A. Nevitt, J. Danielsen, and A. Kelber, Vision on the high seas: spatial resolution and optical sensitivity in two procellariiform seabirds with different foraging strategies, Journal of Experimental Biology, vol.219, issue.21, pp.3329-3338, 2016.

W. Nachtigall, U. Hanauer-thieser, and M. Mörz, Flight of the honey bee vii: metabolic power versus flight speed relation, Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, vol.165, issue.6, pp.484-489, 1995.

K. Nakayama and J. Loomis, Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis, Perception, vol.3, issue.1, pp.63-80, 1974.

P. O'neill, Magnetoreception and baroreception in birds. Development, growth & differentiation, vol.55, pp.188-197, 2013.

G. H. Orians and N. E. Pearson, On the theory of central place foraging, Analysis of ecological systems, pp.155-177

C. Pennycuick, Mechanics of flight. Avian biology, vol.5, pp.1-75, 1975.

C. J. Pennycuick, Fifteen Testable Predictions about Bird Flight, Oikos, vol.30, issue.2, pp.165-176, 1978.

C. J. Pennycuick, Bird flight performance, 1989.

C. J. Pennycuick, Gust soaring as a basis for the flight of petrels and albatrosses (Procellariiformes), Avian Science, vol.2, issue.1, pp.1-12, 2002.

C. J. Pennycuick, Modelling the flying bird, vol.5, 2008.

A. E. Pete, D. Kress, M. A. Dimitrov, and D. Lentink, The role of passive avian head stabilization in flapping flight, Journal of The Royal Society Interface, vol.12, issue.110, p.508, 2015.

, Rayleigh 1883 The soaring of birds, Nature, vol.27, issue.701, pp.534-535

P. L. Richardson, How do albatrosses fly around the world without flapping their wings?, Progress in Oceanography, vol.88, issue.1, pp.46-58, 2011.

I. G. Ros and A. A. Biewener, Optic flow stabilizes flight in ruby-throated hummingbirds, Journal of Experimental Biology, vol.219, issue.16, pp.2443-2448, 2016.

F. Ruffier and N. Franceschini, Optic flow regulation: the key to aircraft automatic guidance, Robotics and Autonomous Systems, vol.50, issue.4, pp.177-194, 2005.

G. Sachs, J. Traugott, A. P. Nesterova, G. Dell'omo, F. Kümmeth et al., Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses, PLoS One, vol.7, issue.9, pp.41-449, 2012.

I. Schiffner and M. V. Srinivasan, Budgerigar flight in a varying environment: flight at distinct speeds?, Biology Letters, vol.12, issue.6, 2016.

J. R. Serres and F. Ruffier, Optic flow-based collision-free strategies: From insects to robots, Arthropod Structure & Development, vol.46, issue.5, pp.703-717, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01644523

J. Shamoun-baranes, F. Liechti, and W. M. Vansteelant, Atmospheric conditions create freeways, detours and tailbacks for migrating birds, Journal of Comparative Physiology A, pp.1-21, 2017.

J. Shamoun-baranes, E. Van-loon, D. Alon, P. Alpert, Y. Yom-tov et al., Is there a connection between weather at departure sites, onset of migration and timing of soaring-bird autumn migration in israel?, Global Ecology and Biogeography, vol.15, issue.6, pp.541-552, 2006.

R. Spivey, S. Stansfield, and C. Bishop, Analysing the intermittent flapping flight of a manx shearwater, puffinus puffinus, and its sporadic use of a wave-meandering wing-sailing flight strategy, Progress in Oceanography, vol.125, pp.62-73, 2014.

J. Tautz, S. Zhang, J. Spaethe, A. Brockmann, A. Si et al., Honeybee odometry: performance in varying natural terrain, PLoS Biology, vol.2, issue.7, p.211, 2004.

G. K. Taylor, R. I. Holbrook, and T. B. De-perera, Fractional rate of change of swim-bladder volume is reliably related to absolute depth during vertical displacements in teleost fish, Journal of The Royal Society Interface, vol.7, issue.50, pp.1379-1382, 2010.

C. B. Thaxter, V. H. Ross-smith, J. A. Clark, N. A. Clark, G. J. Conway et al., A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas, Ringing & Migration, vol.29, issue.2, pp.65-76, 2014.

C. S. Von-bartheld and F. Giannessi, The paratympanic organ: a barometer and altimeter in the middle ear of birds, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol.316, issue.6, pp.402-408, 2011.

H. Weimerskirch, T. Guionnet, J. Martin, S. A. Shaffer, and D. P. Costa, Fast and fuel efficient? Optimal use of wind by flying albatrosses, Proceedings of the Royal Society B: Biological Sciences, vol.267, pp.1869-1874, 1455.
URL : https://hal.archives-ouvertes.fr/hal-00193580

T. C. Whiteside and G. Samuel, Blur zone, Nature, vol.225, issue.5227, pp.94-95, 1970.

J. A. Wilson, Sweeping flight and soaring by albatrosses, Nature, vol.257, issue.5524, p.307, 1975.

D. Wylie, W. Bischof, and B. Frost, Common reference frame for neural coding of translational and rotational optic flow, Nature, vol.392, issue.6673, p.278, 1998.

D. R. Wylie, C. Gutiérrez-ibáñez, A. H. Gaede, D. L. Altshuler, and A. Iwaniuk, Visualcerebellar pathways and their roles in the control of avian flight, Frontiers in Neuroscience, vol.12, p.223, 2018.

, For each bird, the number of flights, the number of GPS fixes (in number of points), the flight duration tracked (in seconds), and the time interval (in seconds) are shown with median absolute deviation (MAD) showing variation between flights, Table S2: Details of flights included in dataset, with the identifier number for each bird