L. R. Lynd, P. J. Weimer, W. H. Van-zyl, and I. S. Pretorius, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol Mol Biol Rev, vol.66, pp.506-77, 2002.

D. E. Koeck, A. Pechtl, V. V. Zverlov, and W. H. Schwarz, Genomics of cellulolytic bacteria, Curr Opin Biotechnol, vol.29, pp.171-83, 2014.

K. C. Jennert, C. Tardif, D. I. Young, and M. Young, Gene transfer to Clostridium cellulolyticum ATCC 35319, Microbiology, vol.146, pp.3071-80, 2000.

C. Tardif, H. Maamar, M. Balfin, and J. P. Belaich, Electrotransformation studies in Clostridium cellulolyticum, J Ind Microbiol Biotechnol, vol.27, pp.271-275, 2001.

S. Perret, A. Bélaich, H. P. Fierobe, J. P. Bélaich, and C. Tardif, Towards designer cellulosomes in Clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum, J Bacteriol, vol.186, pp.6544-52, 2004.

J. C. Blouzard, P. M. Coutinho, H. P. Fierobe, B. Henrissat, S. Lignon et al., Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses, Proteomics, vol.10, pp.541-54, 2010.

C. Xu, R. Huang, L. Teng, D. Wang, C. L. Hemme et al., Structure and regulation of the cellulose degradome in Clostridium cellulolyticum, Biotechnol Biofuels, 2013.

J. Ravachol, P. De-philip, R. Borne, P. Mansuelle, M. J. Maté et al., Mechanisms involved in xyloglucan catabolism by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum, Sci Rep, vol.6, p.22770, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440763

B. L. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard et al., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics, Nucleic Acids Res, vol.37, pp.233-241, 2009.

A. Fosses, M. Maté, N. Franche, N. Liu, Y. Denis et al., A seven-gene cluster in Ruminiclostridium cellulolyticum is essential for signalization, uptake and catabolism of the degradation products of cellulose hydrolysis, Biotechnol Biofuels, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01640052

Y. H. Zhang and L. R. Lynd, Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation, Proc Natl Acad Sci USA, vol.102, pp.7321-7326, 2005.

J. Lou, K. A. Dawson, and H. J. Strobel, Cellobiose and cellodextrin metabolism by the ruminal bacterium Ruminococcus albus, Curr Microbiol, vol.35, pp.221-228, 1997.

Y. H. Zhang and L. R. Lynd, Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum, Appl Environ Microbiol, vol.70, pp.1563-1572, 2004.

S. J. Ha, J. M. Galazka, J. Ohe, V. Kordi?, H. Kim et al., Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters, Metab Eng, vol.15, pp.134-177, 2013.

T. Sasaki, T. Tanaka, S. Nakagawa, and K. Kainuma, Purification and properties of Cellvibrio gilvus cellobiose phosphorylase, Biochem J, vol.209, pp.803-810, 1983.

M. Reichenbecher, F. Lottspeich, and K. Bronnenmeier, Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium, Eur J Biochem, vol.247, pp.262-269, 1997.

K. Hamura, W. Saburi, S. Abe, N. Morimoto, H. Taguchi et al., Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis, Biosci Biotechnol Biochem, vol.76, pp.812-820, 2012.

D. A. Yernool, J. K. Mccarthy, D. E. Eveleigh, and J. D. Bok, Cloning and characterization of the glucooligosaccharide catabolic pathway beta-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana, J Bacteriol, vol.182, pp.5172-5181, 2000.

Y. Wu, G. Mao, H. Fan, A. Song, Y. P. Zhang et al., Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity. Sci Rep, 2017.

M. Kitaoka, Diversity of phosphorylases in glycoside hydrolase families, Appl Microbiol Biotechnol, vol.99, pp.8377-90, 2015.

T. Sawano, W. Saburi, K. Hamura, H. Matsui, and H. Mori, Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group, FEBS J, vol.280, pp.4463-73, 2013.

M. Hiraishi, K. Igarashi, S. Kimura, M. Wada, M. Kitaoka et al., Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase, Carbohydr Res, vol.344, pp.2468-73, 2009.

C. M. Bianchetti, N. L. Elsen, B. G. Fox, and G. N. Phillips, Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate, Acta Crystallogr, vol.67, pp.1345-1354, 2011.

E. C. O'neill, G. Pergolizzi, C. Stevenson, D. M. Lawson, S. A. Nepogodiev et al., Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis, Carbohydr Res, vol.451, pp.118-150, 2017.

J. T. Heap, O. J. Pennington, S. T. Cartman, G. P. Carter, and N. P. Minton, The ClosTron: a universal gene knock-out system for the genus Clostridium, J Microbiol Methods, vol.70, pp.452-64, 2007.

W. Liu, D. R. Bevan, and Y. H. Zhang, The family 1 glycoside hydrolase from Clostridium cellulolyticum H10 is a cellodextrin glucohydrolase, Appl Biochem Biotechnol, vol.161, pp.264-73, 2010.

N. Franche, C. Tardif, J. Ravachol, S. Harchouni, P. H. Ferdinand et al., SLH-containing glycoside hydrolase: characterization and investigation on its role in Ruminiclostridium cellulolyticum, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440768

P. H. Ferdinand, R. Borne, V. Trotter, S. Pagès, C. Tardif et al., Are cellulosome scaffolding protein CipC and CBM3-containing protein HycP, involved in adherence of Clostridium cellulolyticum to cellulose? PLoS ONE, 2013.

E. Petitdemange, F. Caillet, J. Giallo, and C. Gaudin, Clostridium cellulolyticum sp. nov., a cellulolytic mesophile species from decayed grass, Int J Sys Bacteriol, vol.34, pp.155-164, 1948.

J. Giallo, C. Gaudin, J. P. Belaich, E. Petitdemange, and F. Caillet-mangin, Metabolism of glucose and cellobiose by cellulolytic mesophilic Clostridium sp. strain H10, Appl Environ Microbiol, vol.45, pp.843-852, 1983.

H. Celik, J. C. Blouzard, B. Voigt, D. Becher, V. Trotter et al., A two-component system (XydS/R) controls the expression ? fast, convenient online submission ? thorough peer review by experienced researchers in your field ? rapid publication on acceptance ? support for research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research

, Ready to submit your research ? Choose BMC and benefit from: of genes encoding CBM6-containing proteins in response to straw in Clostridium cellulolyticum, PLoS ONE, 2013.

A. Roy, A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction, Nat Protoc, vol.5, pp.725-763, 2010.

Y. Zhang, I-TASSER server for protein 3D structure prediction. BMC Bioinform, 2008.

P. Emsley, B. Lohkamp, W. Scott, and K. Cowtan, Features and development of Coot, Acta Crist D, vol.66, pp.486-501, 2010.

J. Zhang, Y. Liang, and Y. Zhang, Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling, Structure, vol.19, pp.1784-95, 2011.

C. Notredame, D. G. Higgins, and J. Heringa, T-Coffee: a novel method for multiple sequence alignments, J Mol Biol, vol.302, pp.205-222, 2000.

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nuclear Acids Res, vol.42, pp.320-324, 2014.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations