E. Augeraud-véron, R. Boucekkine, and V. M. Veliov, Distributed optimal control models in environmental economics: a review, Mathematical Modelling of Natural Phenomena, vol.14, issue.1, p.106, 2019.

L. V. Ballestra, The spatial AK model and the Pontryagin maximum principle, Journal of Mathematical Economics, vol.67, pp.87-94, 2016.

R. Barro and X. Sala-i-martin, Economic Growth, 2004.

E. Barucci and F. Gozzi, Investment in a vintage capital model, Research in Economics, vol.52, issue.2, pp.159-188, 1998.

E. Barucci and F. Gozzi, Technology adoption and accumulation in a vintage-capital model, Journal of economics, vol.74, issue.1, pp.1-38, 2001.

A. Bensoussan, G. Da-prato, M. C. Delfour, and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, 2006.

R. Boucekkine, G. Fabbri, S. Federico, and F. Gozzi, Geographic environmental Kuznets curves: The optimal growth linear-quadratic case, Mathematical Modelling of Natural Phenomena, vol.14, issue.1, p.105, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01795160

R. Boucekkine, G. Fabbri, S. Federico, and F. Gozzi, Growth and agglomeration in the heterogeneous space: a generalized AK approach, Journal of Economic Geography, 2019.
URL : https://hal.archives-ouvertes.fr/halshs-01399995

R. Boucekkine, J. Krawczyk, and T. Vallée, Environmental quality versus economic performance: A dynamic game approach, Optimal Control Applications and Methods, vol.32, pp.29-46, 2011.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011.

P. Brito, The dynamics of growth and distribution in a spatially heterogeneous world. Working Papers Department of Economics, 2004.

W. A. Brock, A. Xepapadeas, Y. , and A. N. , Optimal control in space and time and the management of environmental resources, Annual Review of Resource Economics, vol.6, issue.1, pp.33-68, 2014.

C. Camacho, P. Barahona, and A. , Land use dynamics and the environment, Journal of Economic Dynamics and Control, vol.52, pp.96-118, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01074190

M. G. Crandall, H. Ishii, and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American mathematical society, vol.27, issue.1, pp.1-67, 1992.

E. A. Coddington and N. Levinson, Theory of ordinary differential equations, 1955.

E. J. Dockner and N. Van-long, International pollution control: cooperative versus noncooperative strategies, Journal of Environmental Economics and Management, vol.25, issue.1, pp.13-29, 1993.

K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol.194, 1995.

F. De-frutos and G. Martin-herran, Spatial effects and strategic behavior in a multiregional transboundary pollution dynamic game, Journal of Environmental Economics and Management, 2018.

F. De-frutos and G. Martin-herran, Spatial vs. non-spatial transboundary pollution control in a class of cooperative and non-cooperative dynamic games, European Journal of Operational Research, vol.276, issue.1, pp.379-394, 2019.

G. Fabbri, Geographical structure and convergence: A note on geometry in spatial growth models, Journal of Economic Theory, vol.162, issue.1, pp.114-136, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01446208

R. Boucekkine, IMéRA. 2 Place Le Verrier, 13004.

G. Fabbri, U. Alpes, . Cnrs, . Inra, I. Grenoble et al.,

C. Grenoble,

S. Federico, Dipartimento di Economia Politica e Statistica. Piazza

F. Gozzi, Dipartimento di Economia e Finanza, Libera Università degli Studi Sociali Guido Carli