P. A. Ariya, M. Amyot, A. Dastoor, D. Deeds, A. Feinberg et al., Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions, Chem. Rev, vol.115, pp.3760-3802, 2015.

S. P. Lavoie, D. T. Mapolelo, D. M. Cowart, B. J. Polacco, M. K. Johnson et al., Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli, J. Biol. Inorg. Chem, vol.20, pp.1239-1251, 2015.

R. G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc, vol.85, p.3533, 1963.

G. Henkel and B. Krebs, Metallothioneins: Zinc, cadmium, mercury, and copper thiolates and selenolates mimicking protein active site features -Structural aspects and biological implications, Chem. Rev, vol.104, pp.801-824, 2004.

M. J. Stillman and . Metallothioneins, Coord. Chem. Rev, vol.144, pp.461-511, 1995.

C. T. Walsh, M. D. Distefano, M. J. Moore, L. M. Shewchuk, and G. L. Verdine, MolecularBasis of Bacterial-Resistance to Organomercurial and Inorganic Mercuric-Salts, Faseb J, vol.2, pp.124-130, 1988.

J. G. Wright, M. J. Natan, F. M. Macdonnel, D. Ralston, and T. V. O'halloran, In Prog. Inorg. Chem, vol.38, pp.323-412, 1990.

J. G. Wright, H. T. Tsang, J. E. Pennerhahn, and T. V. O'halloran, Coordination Chemistry of the Hg-Merr Metalloregulatory Protein -Evidence for a Novel Tridentate Hg-Cysteine Receptor-Site, J. Am. Chem. Soc, vol.112, pp.2434-2435, 1990.

L. M. Utschig, J. W. Bryson, and T. V. O'halloran, Mercury-199 NMR of the metal receptor site in MerR and Its Protein-DNA Complex, Science, vol.268, pp.380-385, 1995.

J. D. Helmann, B. T. Ballard, and C. T. Walsh, The Merr Metalloregulatory Protein Binds Mercuric Ion as a Tricoordinate, Metal-Bridged Dimer, Science, vol.247, pp.946-948, 1990.

S. J. Opella, T. M. Desilva, and G. Veglia, Structural biology of metal-binding sequences, Curr. Opin. Chem. Biol, vol.6, pp.217-223, 2002.

R. A. Steele and S. J. Opella, Structures of the Reduced and Mercury-Bound Forms of MerP, the Periplasmic Protein from the Bacterial Mercury Detoxification System, Biochemistry, vol.36, pp.6885-6895, 1997.

G. Veglia, F. Porcelli, T. Desilva, A. Prantner, and S. J. Opella, The Structure of the MetalBinding Motif GMTCAAC Is Similar in an 18-residue Linear Peptide and the Mercury Binding Protein MerP, J. Am. Chem. Soc, vol.122, pp.2389-2390, 2000.

E. Rossy, O. Sénèque, D. Lascoux, D. Lemaire, S. Crouzy et al., Is the cytoplasmic loop of MerT, the mercuric ion transport protein, involved in mercury transfer to the mercuric reductase?, Febs Lett, vol.575, pp.86-90, 2004.

D. Szunyogh, B. Gyurcsik, F. H. Larsen, M. Stachura, P. W. Thulstrup et al., Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries, Dalton Trans, vol.44, pp.12576-88, 2015.

A. Jancso, B. Gyurcsik, E. Mesterhazy, R. Berkecz, P. Rousselot-pailley et al., Competition of zinc(II) with cadmium(II) or mercury(II) in binding to a 12-mer peptide, Model peptides based on the binding loop of the copper metallochaperone Atx1: Selectivity of the consensus sequence MxCxxC for metal ions Hg(II), Cu(I), Cd(II), Pb(II), and Zn(II), vol.126, pp.5510-5520, 2006.

O. Sénèque, S. Crouzy, D. Boturyn, P. Dumy, M. Ferrand et al., Novel model peptide for Atx1-like metallochaperones, Chem. Commun, pp.770-771, 2004.

S. Pires, J. Habjanic, M. Sezer, C. M. Soares, L. Hemmingsen et al., Design of a peptidic turn with high affinity for Hg(II), Inorg. Chem, vol.51, pp.11339-11387, 2012.

A. C. Rosenzweig, D. L. Huffman, M. Y. Hou, A. K. Wernimont, R. A. Pufahl et al., Crystal structure of the Atx1 metallochaperone protein at 1.02 A resolution, vol.7, pp.605-617, 1999.

S. Chakraborty, D. S. Touw, A. F. Peacock, J. Stuckey, and V. L. Pecoraro, Structural Comparisons of Apo-and Metalated Three-Stranded Coiled Coils Clarify Metal Binding Determinants in Thiolate Containing Designed Peptides, J. Am. Chem. Soc, vol.132, pp.13240-13250, 2010.

G. R. Dieckmann, D. K. Mcrorie, J. D. Lear, K. A. Sharp, W. F. Degrado et al., The role of protonation and metal chelation preferences in defining the properties of mercurybinding coiled coils, J. Mol. Biol, vol.280, pp.897-912, 1998.

G. R. Diekmann, D. K. Mcrorie, D. L. Tierney, L. M. Utschig, C. P. Singer et al., Novo Design of Mercury-Binding Two-and Three-Helical Bundles, J. Am. Chem. Soc, vol.119, pp.6195-6196, 1997.

B. T. Farrer, N. P. Harris, K. E. Balchus, and V. L. Pecoraro, Thermodynamic model for the stabilization of trigonal thiolato mercury(II) in designed three-stranded coiled coils, Biochemistry, vol.40, pp.14696-14705, 2001.

B. T. Farrer and V. L. Pecoraro, Hg(II) binding to a weakly associated coiled coil nucleates an encoded metalloprotein fold: A kinetic analysis, vol.100, pp.3760-3765, 2003.

D. Ghosh, K. H. Lee, B. Demeler, and V. L. Pecoraro, Linear free-energy analysis of mercury(II) and cadmium(II) binding to three-stranded coiled coils, Biochemistry, vol.44, pp.10732-10740, 2005.

O. Iranzo, P. W. Thulstrup, S. Ryu, L. Hemmingsen, and V. L. Pecoraro, The application of Hg-199 NMR and Hg-199m perturbed angular correlation (PAC) spectroscopy to define the biological chemistry of Hg-II: A case study with designed two-and three-stranded coiled coils Chem, Eur. J, vol.13, pp.9178-9190, 2007.

M. Luczkowski, M. Stachura, V. Schirf, B. Demeler, L. Hemmingsen et al., Design of Thiolate Rich Metal Binding Sites within a Peptidic Framework, Inorg. Chem, vol.47, pp.10875-10888, 2008.

M. Matzapetakis, B. T. Farrer, T. Weng, L. Hemmingsen, J. E. Penner-hahn et al., Comparison of the Binding of Cadmium(II), Mercury(II), and Arsenic (III) to the de Novo Designed Peptides TRI L12C and TRI L16C, J. Am. Chem. Soc, vol.124, pp.8042-8054, 2002.

K. H. Lee, C. Cabello, L. Hemmingsen, E. N. Marsh, and V. L. Pecoraro, Using nonnatural amino acids to control metal-coordination number in three-stranded coiled coils, Angew. Chem. Int. Ed, vol.45, pp.2864-2868, 2006.

A. F. Peacock, J. A. Stuckey, and V. L. Pecoraro, Switching the Chirality of the Metal Environment Alters the Coordination Mode in Designed Peptides, Angew. Chem. Int. Ed, vol.48, pp.7371-7374, 2009.

A. M. Pujol, C. Gateau, C. Lebrun, and P. Delangle, A Cysteine-Based Tripodal Chelator with a High Affinity and Selectivity for Copper(I), J. Am. Chem. Soc, vol.131, pp.6928-6929, 2009.

A. M. Pujol, C. Gateau, C. Lebrun, and P. Delangle, A series of tripodal cysteine derivatives as water-soluble chelators highly selective for Copper (I), Chem. Eur. J, vol.17, pp.4418-4428, 2011.

A. M. Pujol, C. Lebrun, C. Gateau, A. Manceau, and P. Delangle, Mercury-Sequestering Pseudopeptides with a Tris(cysteine) Environment in Water, Eur. J. Inorg. Chem, pp.3835-3843, 2012.

A. S. Jullien, C. Gateau, C. Lebrun, and P. Delangle, Mercury Complexes with Tripodal Pseudopeptides Derived from D-Penicillamine Favour a HgS3 Coordination, Eur. J. Inorg. Chem, pp.3674-3680, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01731483

P. W. Riddles, R. L. Blakeley, and B. Zerner, Reassessment of Ellman's Reagent, Methods Enzymol, vol.91, pp.49-60, 1983.

K. H. Scheller, T. H. Abel, P. E. Polanyi, P. K. Wenk, B. E. Fischer et al., Metal ion/buffer interactions. Stability of binary and ternary complexes containing 2-[bis(2-hydroxyethyl)amino]-2(hydroxymethyl)-1,3-propanediol (Bistris) and adenosine 5'-triphosphate (ATP), Eur. J. Biochem, vol.107, pp.455-466, 1980.

J. S. Magyar and H. A. Godwin, Spectropotentiometric analysis of metal binding to structural zinc-binding sites: accounting quantitatively for pH and metal ion buffering effects, Anal. Biochem, vol.320, pp.39-54, 2003.

R. G. Kidd and R. J. Goodfellow, NMR and the Periodic Table

R. K. Harris, B. E. Mann, and . Ed, , pp.195-278, 1978.

O. Proux, V. Nassif, A. Prat, O. Ulrich, E. Lahera et al., Feedback system of a liquid-nitrogen-cooled double-crystal monochromator: design and performances, J. Synchrotron Radiat, vol.13, pp.59-68, 2006.
URL : https://hal.archives-ouvertes.fr/insu-00713235

T. Ressler, WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows, J. Synchrotron Radiat, vol.5, pp.118-122, 1998.

A. L. Ankudinov and J. J. Rehr, Relativistic calculations of spin-dependent x-ray-absorption spectra, Phys. Rev. B, vol.56, pp.1712-1715, 1997.

C. H. Kim, S. Parkin, M. Bharara, and D. Atwood, Linear coordination of Hg(II) by cysteamine, Polyhedron, vol.21, pp.225-228, 2002.

F. Jalilehvand, B. O. Leung, M. Izadifard, and E. Damian, Mercury(II) cysteine complexes in alkaline aqueous solution, Inorg. Chem, vol.45, pp.66-73, 2006.

V. Mah and F. Jalilehvand, Glutathione Complex Formation with Mercury(II) in Aqueous Solution at Physiological pH, Chem. Res.Toxicol, vol.23, pp.1815-1823, 2010.

T. Ressler, A. Walter, J. Scholz, J. P. Tessonnier, and D. S. Su, Structure and properties of a Mo oxide catalyst supported on hollow carbon nanofibers in selective propene oxidation, J. Catal, vol.271, pp.305-314, 2010.

C. M. Fletcher, D. N. Jones, R. Diamond, and D. Neuhaus, Treatment of NOE constraints involving equivalent or nonstereoassigned protons in calculations of biomacromolecular structures, J. Biomol. NMR, vol.8, pp.292-310, 1996.

A. T. Brünger, X-Plor version 3.1. A system for X-ray Crystallography and NMR, X-Plor version 3.1. A system for X-ray Crystallography and NMR

A. Leiva-presa, M. Capdevila, and P. Gonzalez-duarte, Mercury(II) binding to metallothioneins -Variables governing the formation and structural features of the mammalian Hg-MT species, Eur. J. Biochem, vol.49, pp.4872-4880, 1992.

O. Iranzo, D. Ghosh, and V. L. Pecoraro, Assessing the integrity of designed homomeric parallel three-stranded coiled coils in the presence of metal ions, Inorganic Chemistry, vol.45, pp.9959-9973, 2006.

V. Mah and F. Jalilehvand, Mercury(II) complex formation with glutathione in alkaline aqueous solution, J. Biol. Inorg. Chem, vol.13, pp.541-553, 2008.

G. Christou, K. Folting, and J. C. Huffman, Mononuclear, 3-Coordinate Metal ThiolatesPreparation and Crystal-Structures of, Polyhedron, vol.3, pp.1247-1253, 1984.

A. Manceau and K. L. Nagy, Relationships between Hg(II)-S bond distance and Hg(II) coordination in thiolates, Dalton Trans, pp.1421-1425, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00354130

M. Kato, K. Kojima, T. Okamura, H. Yamamoto, T. Yamamura et al., Relation between Intramolecular NH...S Hydrogen Bonds and Coordination Number in Mercury(II) Complexes with Carbamoylbenzenethiol Derivatives, Inorg. Chem, vol.44, pp.4037-4044, 2005.

L. Ruckthong, M. L. Zastrow, J. A. Stuckey, and V. L. Pecoraro, A Crystallographic Examination of Predisposition versus Preorganization in de Novo Designed Metalloproteins, Journal of the American Chemical Society, vol.138, pp.11979-11988, 2016.