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In the far northern part of Cameroon, the shores of Lake Chad are in the most exposed zone to the risks of soil degradation due to environmental conditions, more severe climatic
conditions and modes of uses and exploitation of natural resources (National Action Plan to combat Desertification (PAN/LCD) 2006).
It is an area marked by degradatlon and decline of soil fertility, unsuitable cultivation practices, high extension of barren land,

; erosion, runoff, and decrease of fallows, overgrazing, and  pesticides
pollution (Elias Symeonakis and Drake 2010, Seignobos and  lyébi-Mandjek
2000.

Figure 4 : Localisation of the study area
Figure 1: Cattle herd in pasture in far north Cameroon (source: La Tribune Afrique)

Background 3. Results

3.1 Linear regression

Several methods help quantifying and mapping soil Table 1: Statistics relations between synthetic image and indices
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2. Methodology

Two Sentinel 2 satellite images acquired on April 29, 2017 3.2 Descriptive statistics

were used. These images have 13 bands, but only six of them The first two factors of PCA and "
were staked, that is Bands corresponding to blue, green, red, factorial analysis explain respectively .
near infrared, Short Wave Infraredl and 2. 87.54% and 85.62% of the common g,
To carry out this study, a total of four vegetation spectral variability of the characteristics %

indices and nine soils spectral indices are generated and
combined to describe bare soils states, soils properties and
vegetation cover.

measured. The first factor contains
soil information and the second factor
focuses information on vegetation.

4 97 05 @5 0 0B’ 05 07 1 4 47 05 0% 0 025 05 07 1
F1(54.51 %) F1(55.76 %)

3.3 Equation of the model

Figure 5: correlations between variables and factors

The index maps are weighting with their coefficient of determination to highlight the individual contribution

of each index, and their highest values of factorial coordinates obtained through the factorial analysis and the
PCA in order to preserve the best information provided by each of these methods of analysis. This information
is combined to compose the following equation:

ndvi*(xmax+Ymax)*R? + msavi2*(xmax+Ymax)*R? + dswi*(xmax+Ymax)*R? + ndgi*(xmax+Ymax)*Rz+
msi*(xmax+Ymax)*R2 + bi*(xmax+Ymax)*R2 + crust index*(xmax+Ymax)*R? + ti*(xmax+Ymax)*R? + cuirass
index*(xmax+Ymax)*R? + ri*(xmax+Ymax)*R2 + colour index*(xmax+Ymax)*R? + gsi*(xmax+Ymax)*R? +
ndsi*(xmax+Ymax)*R? = RISK OF SOILS DEGRADATION

Figure 2: (a) the vegetation indices and (b) the soil indices

Then, all these indices are aggregate as one image
(independent variable) and correlated with individual indices

(dependent variable) to have correlations and determinations 3.4 Final map =
coefficients. Next, principal Component Analysis and factorial A
analysis are applied to all spectral indices to summarize The result of this modelling is a map of risk exposition
information, have factorials coordinates and to detect positive soils degree to agents and degradation factors. The =§;';:=mm
and negative correlation. Finally, the model equation is potential soils exposition state is classified on the map |, [ Moderate "
obtained by index weighting with the respective values of the below in five levels of exposition risk from the lower | [ sigh omodensc |
coefficient of determination and factorials coordinates. level to the higher.
[ Do cision | {specr oy | Frrrp— The "Lower" and "Moderate to low" levels cover
__ . _ 1 occupy respectively 25,214.35 hectares and 130,717.19
S| [pauie ] e ol e s o degiben | hectares. The "Moderate” level of exposition spreads
‘ sparsely over an area of 137,404.34 hectares. With
I 152371.91 hectares, the "High to moderate” level
e Vst ot represents the most widespread state of exposition. The
"Higher" level occupies 29175.73 hectares.
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4. Conclusion

The sequential image processing developed in this study allows to model, classify and analyse the soils
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Figure 3: the flowchart of the methodology
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