A. Arieli, Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex, J. Neurophysiol, vol.73, issue.5, pp.2072-2093, 1995.

A. Arieli, Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses, Science, vol.273, issue.5283, pp.1868-1871, 1996.

J. Anderson, Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex, Nat. Neurosci, vol.3, issue.6, pp.617-621, 2000.

Y. Shu, Barrages of synaptic activity control the gain and sensitivity of cortical neurons, J. Neurosci, vol.23, issue.32, pp.10388-10401, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00294475

R. Cossart, D. Aronov, and R. Yuste, Attractor dynamics of network UP states in the neocortex, Nature, vol.423, issue.6937, pp.283-288, 2003.

J. Fiser, C. Chiu, and M. Weliky, Small modulation of ongoing cortical dynamics by sensory input during natural vision, Nature, vol.431, issue.7008, pp.573-578, 2004.

T. Kenet, Spontaneously emerging cortical representations of visual attributes, Nature, vol.425, issue.6961, pp.954-956, 2003.

P. Berkes, Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment, Science, vol.331, issue.6013, pp.83-87, 2011.

C. Gómez-laberge, Bottom-up and top-down input augment the variability of cortical neurons, Neuron, vol.91, issue.3, pp.540-547, 2016.

M. H. Chang, K. M. Armstrong, and T. Moore, Dissociation of response variability from firing rate effects in frontal eye field neurons during visual stimulation, working memory, and attention, J. Neurosci, vol.32, issue.6, pp.2204-2216, 2012.

B. White, L. F. Abbott, and J. Fiser, Suppression of cortical neural variability is stimulus-and state-dependent, J. Neurophysiol, vol.108, issue.9, pp.2383-2392, 2012.

M. M. Churchland, Stimulus onset quenches neural variability: a widespread cortical phenomenon, Nat. Neurosci, vol.13, issue.3, pp.369-378, 2010.

I. M. Finn, N. J. Priebe, and D. Ferster, The emergence of contrastinvariant orientation tuning in simple cells of cat visual cortex, Neuron, vol.54, issue.1, pp.137-152, 2007.

C. Monier, Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning, Neuron, vol.37, issue.4, pp.663-680, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00123859

B. J. He, Spontaneous and task-evoked brain activity negatively interact, J. Neurosci, vol.33, issue.11, pp.4672-4682, 2013.

G. Orbán, Neural variability and sampling-based probabilistic representations in the visual cortex, Neuron, vol.92, issue.2, pp.530-543, 2016.

. Deneux, Visual stimulation quenches global alpha range activity in awake primate V4: a case study
URL : https://hal.archives-ouvertes.fr/hal-02329366

M. A. Smith and A. Kohn, Spatial and temporal scales of neuronal correlation in primary visual cortex, J. Neurosci, vol.28, issue.48, p.12591, 2008.

M. W. Oram, Visual stimulation decorrelates neuronal activity, J. Neurophysiol, vol.105, issue.2, pp.942-957, 2011.

T. Deneux and A. Grinvald, Milliseconds of sensory input abruptly modulate the dynamics of cortical states for seconds, Cereb. Cortex, 2016.

S. Chemla and F. Chavane, Voltage-sensitive dye imaging: technique review and models, J. Physiol. Paris, vol.104, issue.1-2, pp.40-50, 2010.

M. A. Smith and M. A. Sommer, Spatial and temporal scales of neuronal correlation in visual area v4, J. Neurosci, vol.33, issue.12, pp.5422-5432, 2013.

A. Arieli, A. Grinvald, and H. Slovin, Dural substitute for long-term imaging of cortical activity in behaving monkeys and its clinical implications, J. Neurosci. Methods, vol.114, issue.2, pp.119-133, 2002.

E. Shtoyerman, Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys, J. Neurosci, vol.20, issue.21, pp.8111-8121, 2000.

K. R. Gegenfurtner and M. J. Hawken, Interaction of motion and color in the visual pathways, Trends Neurosci, vol.19, issue.9, pp.394-401, 1996.

A. W. Roe, Toward a unified theory of visual Area V4, Neuron, vol.74, issue.1, pp.12-29, 2012.

D. Shoham, Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes, Neuron, vol.24, issue.4, pp.791-802, 1999.

S. Chemla and F. Chavane, A biophysical cortical column model to study the multi-component origin of the VSDI signal, NeuroImage, vol.53, issue.2, pp.420-438, 2010.

L. B. Cohen, Changes in axon fluorescence during activity: molecular probes of membrane potential, J. Membr. Biol, vol.19, issue.1, pp.1-36, 1974.

B. M. Salzberg, Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons, J. Neurophysiol, vol.40, issue.6, pp.1281-1291, 1977.

G. Deco and E. Hugues, Neural network mechanisms underlying stimulus driven variability reduction, PLoS Comput. Biol, vol.8, issue.3, p.1002395, 2012.

G. Deco and V. K. Jirsa, Ongoing cortical activity at rest: criticality, multistability, and ghost attractors, J. Neurosci, vol.32, issue.10, pp.3366-3375, 2012.

K. Rajan, L. F. Abbott, and H. Sompolinsky, Stimulus-dependent suppression of chaos in recurrent neural networks, Phys. Rev. E, vol.82, p.11903, 2010.

B. Blumenfeld, D. Bibitchkov, and M. Tsodyks, Neural network model of the primary visual cortex: from functional architecture to lateral connectivity and back, J. Comput. Neurosci, vol.20, issue.2, pp.219-241, 2006.

D. L. Ringach, Spontaneous and driven cortical activity: implications for computation, Curr. Opin. Neurobiol, vol.19, issue.4, pp.439-444, 2009.

J. Fiser, Statistically optimal perception and learning: from behavior to neural representations, Trends Cognit. Sci, vol.14, issue.3, pp.119-130, 2010.

M. V. Sanchez-vives and M. Mattia, Slow wave activity as the default mode of the cerebral cortex, Arch. Ital. Biol, vol.152, issue.2-3, pp.147-155, 2014.