T. N. Seyfried, Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer, 2012.

S. Seneff, G. Wainwright, and L. Mascitelli, Nutrition and Alzheimer's disease: the detrimental role of a high carbohydrate diet, Eur J Intern Med, vol.22, pp.134-174, 2011.

H. V. Miranda and T. F. Outeiro, The sour side of neurodegenerative disorders: the effects of protein glycation, J Pathol, vol.221, pp.13-25, 2010.

G. Auburger and A. Kurz, The role of glyoxalases for sugar stress and aging, with relevance for dyskinesia, anxiety, dementia and Parkinson's disease, Aging, vol.3, pp.5-9, 2011.

N. M. Avena and M. S. Gold, Food and addiction -sugars, fats and hedonic overeating, Addiction, vol.106, 2011.

T. Zilberter and Y. Zilberter, Energy metabolism: from neurons and glia to the whole brain: pathology and metabolic correction, Adv Physiol Sci, vol.43, pp.37-54, 2012.

E. Domouzoglou and E. Maratos-flier, Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis, Am J Clin Nutr, pp.901-906, 2011.

R. J. Klement and C. E. Champ, Calories, carbohydrates, and cancer therapy with radiation: exploiting the five R's through dietary manipulation, Cancer Metastasis Rev, vol.33, pp.217-246, 2014.

T. Zilberter, Carbohydrate-biased control of energy metabolism: the darker side of the selfish brain, Front Neuroenerget, vol.3, issue.8, 2011.

W. Bernhard, M. Guzmán-ruiz, C. Layritz, B. Legutko, E. Zinser et al., Dietary sugar is critical for high fat diet-induction of hypothalamic inflammation via advanced glycation end-products, Mol Metab, vol.6, pp.897-908, 2017.

M. Aragno and R. Mastrocola, Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease, Nutrients, vol.9, p.385, 2017.

Y. Gao, M. Bielohuby, T. Fleming, G. F. Grabner, E. Foppen et al., Dietary sugars, not lipids, drive hypothalamic inflammation. Research Gate, 2017.

R. T. Woodyatt, The action of glycol aldehyd and glycerin aldehyd in diabetes mellitus and the nature of antiketogenesis, JAMA, vol.55, pp.2109-2121, 1910.

P. A. Shaffer and . I. Antiketogenesis, An in vitro analogy, J BiolChem, vol.47, pp.433-73, 1921.

R. M. Wilder and M. D. Winter, The threshold of ketogenesis, J Biol Chem, vol.52, pp.393-401, 1922.

C. D. Withrow, The ketogenic diet: mechanism of anticonvulsant action, Adv Neurol, vol.7, pp.635-677, 1980.

R. Pandit, D. Jong, J. W. Vanderschuren, L. J. Adan, and R. A. , Neurobiology of overeating and obesity: the role of melanocortins and beyond, Eur J Pharmacol, vol.660, pp.28-42, 2011.

D. V. Coscina, S. Yehuda, L. M. Dixon, S. J. Kish, and C. E. Leprohon-greenwood, Learning is improved by a soybean oil diet in rats, Life Sci, vol.38, issue.86, p.90130, 1986.

B. C. Finger, T. G. Dinan, and J. F. Cryan, High-fat diet selectively protects against the effects of chronic social stress in the mouse, Neuroscience, vol.192, pp.351-60, 2011.

H. Funato, S. Oda, J. Yokofujita, H. Igarashi, and M. Kuroda, Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus, PloS ONE, vol.6, 2011.

C. J. Holloway, L. E. Cochlin, Y. Emmanuel, A. Murray, I. Codreanu et al., A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects, Am J Clin Nutr, vol.93, pp.748-55, 2011.

J. K. Howard, B. J. Cave, L. J. Oksanen, I. Tzameli, C. Bjørbaek et al., Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3, Nat Med, vol.10, pp.734-742, 2004.

X. L. Hu, X. Cheng, J. Fei, and Z. Q. Xiong, Neuron-restrictive silencer factor is not required for the antiepileptic effect of the ketogenic diet, Epilepsia, vol.52, pp.1609-1625, 2011.

S. G. Jarrett, J. B. Milder, L. P. Liang, and M. Patel, The ketogenic diet increases mitochondrial glutathione levels, J Neurochem, vol.106, pp.1044-51, 2008.

C. S. Johnston, S. L. Tjonn, P. D. Swan, A. White, H. Hutchins et al., Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets, Am J Clin Nutr, vol.83, pp.1055-61, 2006.

, J Cereb Blood Flow Metab, vol.28, pp.1907-1923, 2008.

Y. Ravussin, R. Gutman, S. Diano, M. Shanabrough, E. Borok et al., Effects of chronic weight perturbation on energy homeostasis and brain structure in mice, Am J Physiol Regul Integr Comp Physiol, vol.300, pp.1352-62, 2011.

R. Samala, J. Klein, and K. Borges, The ketogenic diet changes metabolite levels in hippocampal extracellular fluid, Neurochem Int, vol.58, pp.5-8, 2011.

R. Samala, S. Willis, and K. Borges, Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models, J Epilepsy Res, vol.81, pp.119-146, 2008.

T. Tanaka, S. Hidaka, H. Masuzaki, S. Yasue, Y. Minokoshi et al., Skeletal muscle AMP-activated protein kinase phosphorylation parallels metabolic phenotype in leptin transgenic mice under dietary modification, Diabetes, vol.54, pp.2365-74, 2005.

S. L. Teegarden, A. N. Scott, and T. L. Bale, Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling, Neuroscience, vol.162, pp.924-956, 2009.

I. Van-der-auwera, S. Wera, F. Van-leuven, and H. St, A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease, Nutr Metab, vol.2, p.28, 2005.

Z. Vucetic, J. Kimmel, and T. M. Reyes, Chronic high-fat diet drives postnatal epigenetic regulation of µ-opioid receptor in the brain, Neuropsychopharmacology, vol.36, pp.1199-206, 2011.

C. Wang, E. Bomberg, C. J. Billington, A. S. Levine, and C. M. Kotz, Brainderived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure, Brain Res, vol.1336, pp.66-77, 2010.

G. Winocur and C. E. Greenwood, Studies of the effects of high fat diets on cognitive function in a rat model, Neurobiol Aging, pp.46-55, 2005.

J. D. Wood, G. R. Nute, R. I. Richardson, F. M. Whittington, O. Southwood et al., Effects of breed, diet and muscle on fat deposition and eating quality in pigs, Meat Sci, vol.67, pp.651-67, 2004.

K. A. Yamada, N. Rensing, and L. L. Thio, Ketogenic diet reduces hypoglycemiainduced neuronal death in young rats, Neurosci Lett, vol.385, pp.210-214, 2005.

C. B. Ebbeling, J. F. Swain, H. A. Feldman, W. W. Wong, D. L. Hachey et al., Effects of dietary composition on energy expenditure during weightloss maintenance, JAMA, vol.307, pp.2627-2661, 2012.

C. D. Gardner, A. Kiazand, S. Alhassan, S. Kim, R. S. Stafford et al., Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A To Z Weight Loss Study: a randomized trial, JAMA, vol.297, pp.969-77, 2007.

C. D. Gardner, S. Kim, A. Bersamin, M. Dopler-nelson, J. Otten et al., Micronutrient quality of weight-loss diets that focus on macronutrients: results from the A TO Z study, Am J Clin Nutr, vol.92, pp.304-316, 2010.

M. L. Dansinger, J. A. Gleason, J. L. Griffith, H. P. Selker, and E. J. Schaefer, Comparison of the Atkins, Ornish, weight watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial, JAMA, vol.293, pp.43-53, 2005.

E. H. Kossoff and J. L. Dorward, The modified atkins diet, Epilepsia, pp.37-41, 2008.

E. H. Kossoff, J. L. Bosarge, M. J. Miranda, A. Wiemer-kruel, H. C. Kang et al., Will seizure control improve by switching from the modified Atkins diet to the traditional ketogenic diet, Epilepsia, vol.51, pp.2496-2505, 2010.

E. H. Kossoff, M. C. Cervenka, B. J. Henry, C. A. Haney, and Z. Turner, A decade of the modified Atkins diet (2003-2013): results, insights, and future directions, Epilepsy Behav, vol.29, pp.437-479, 2013.

S. Ito, H. Oguni, Y. Ito, K. Ishigaki, J. Ohinata et al., Modified Atkins diet therapy for a case with glucose transporter 1 deficiency syndrome, Brain Dev, vol.30, pp.226-234, 2008.

O. F. El-rashidy, M. F. Nassar, A. Ia, R. H. Shatla, A. et al., Modified Atkins diet vs. classic ketogenic formula in intractable epilepsy, Acta Neurol Scand, vol.128, pp.402-410, 2013.

F. Ye, X. J. Li, W. L. Jiang, H. B. Sun, and J. Liu, Efficacy of and patient compliance with a ketogenic diet in adults with intractable epilepsy: a meta-analysis, J Neurol, vol.11, pp.26-31, 2015.

J. R. Kirsch, D. 'alecy, and L. G. , Hypoxia induced preferential ketone utilization by rat brain slices, Stroke, vol.15, pp.319-342, 1984.

R. L. Veech, B. Chance, Y. Kashiwaya, H. A. Lardy, and G. F. Cahill, Ketone bodies, potential therapeutic uses, IUBMB Life, vol.51, pp.241-248, 2001.

K. J. Bough, J. Wetherington, B. Hassel, J. F. Pare, and J. W. Gawryluk, Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet, Ann Neurol, vol.60, pp.223-258, 2006.

M. A. Puchowicz, K. Xu, X. Sun, A. Ivy, D. Emancipator et al., Diet-induced ketosis increases capillary density without altered blood flow in rat brain, Am J Physiol Endocrinol Metab, vol.292, pp.1607-1622, 2007.

M. L. Haces, K. Hernandez-fonseca, O. N. Medina-campos, T. Montiel, J. Pedraza-chaverri et al., Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions, Exp Neurol, vol.211, pp.85-96, 2008.

P. W. Schutz, P. K. Wong, J. O'kusky, S. M. Innis, and S. Stockler, Effects of d-3-hydroxybutyrate treatment on hypoglycemic coma in rat pups, Exp Neurol, vol.227, pp.180-187, 2011.

Y. Kim-do, J. Vallejo, and J. M. Rho, Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors, J Neurochem, vol.114, pp.130-171, 2010.

J. D. Barks, Y. Liu, Y. Shangguan, Z. Djuric, J. Ren et al., Maternal high-fat diet influences outcomes after neonatal hypoxic-ischemic brain injury in rodents, J Cereb Blood Flow Metab, vol.37, pp.307-325, 2016.

A. D. Goldbart, B. W. Row, L. Kheirandish-gozal, Y. Cheng, K. R. Brittian et al., High fat/refined carbohydrate diet enhances the susceptibility to spatial learning deficits in rats exposed to intermittent hypoxia, Brain Res, vol.1090, pp.190-196, 2006.

T. B. Vanitallie, C. Nonas, D. Rocco, A. Boyar, K. Hyams et al., Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study, Neurology, vol.64, pp.728-758, 2005.

P. Murphy, S. Likhodii, K. Nylen, and W. M. Burnham, The antidepressant properties of the ketogenic diet, Biol Psychiatry, vol.56, pp.981-984, 2004.

P. Murphy, S. S. Likhodii, M. Hatamian, M. Burnham, and W. , Effect of the ketogenic diet on the activity level of Wistar rats, Pediatr Res, vol.57, pp.353-360, 2005.

S. T. Henderson, J. L. Vogel, L. J. Barr, F. Garvin, J. J. Jones et al., Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled, multicenter trial, Nutr Metab, vol.6, p.31, 2009.

L. M. De-lau, M. Bornebroek, J. C. Witteman, A. Hofman, P. J. Koudstaal et al., Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study, Neurology, vol.64, pp.2040-2045, 2005.

M. Maalouf and J. M. Rho, Oxidative impairment of hippocampal long-term potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies, J Neurosci Res, vol.86, pp.3322-3352, 2008.

K. A. Page, A. Williamson, N. Yu, E. C. Mcnay, J. Dzuira et al., Medium chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia, Diabetes, vol.58, pp.1237-1281, 2009.

H. White and B. Venkatesh, Clinical review: ketones and brain injury, Crit Care, vol.15, p.219, 2011.

M. Maalouf, J. M. Rho, and M. P. Mattson, The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies, Brain Res Rev, vol.59, pp.293-315, 2009.

R. Krikorian, M. D. Shidler, K. Dangelo, S. C. Couch, S. C. Benoit et al., Dietary ketosis enhances memory in mild cognitive impairment, Neurobiol Aging, vol.33, pp.425-444, 2012.

S. Iacovides and R. M. Meiring, The effect of a ketogenic diet versus a high-carbohydrate, low-fat diet on sleep, cognition, thyroid function, and cardiovascular health independent of weight loss: study protocol for a randomized controlled trial, Trials, vol.19, p.62, 2018.

P. A. Mcpherson and J. Mceneny, The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress, J Physiol Biochem, vol.68, pp.141-51, 2011.

V. J. Miller, F. A. Villamena, and J. S. Volek, Nutritional ketosis and mitohormesis: potential implications for mitochondrial function and human health, J Clin Nutr Metab, p.5157645, 2018.

P. R. Huttenlocher, Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy, Pediatr Res, vol.10, pp.536-576, 1976.

J. C. Newman, F. Kroll, S. Ulrich, J. J. Palop, and E. Verdin, Ketogenic diet or BHB improves epileptiform spikes, memory, survival in Alzheimer's model, vol.136226, pp.1-30, 2017.

E. Bostock, K. C. Kirkby, and B. V. Taylor, The current status of the ketogenic diet in psychiatry, Front Psychiatry, vol.8, p.43, 2017.

K. J. Bough and J. M. Rho, Anticonvulsant mechanisms of the ketogenic diet, Epilepsia, vol.48, pp.43-58, 2007.

E. Samokhina, I. Popova, A. Malkov, A. I. Ivanov, D. Papadia et al., Chronic inhibition of brain glycolysis initiates epileptogenesis, J Neurosci Res, vol.95, pp.2195-206, 2017.

Y. Zilberter and M. Zilberter, The vicious circle of hypometabolism in neurodegenerative diseases: ways and mechanisms of metabolic correction, J Neurosci Res, vol.95, pp.2217-2252, 2017.

F. Bozzetti and B. Zupec-kania, Toward a cancer-specific diet, Clin Nutr, vol.35, pp.1188-95, 2015.

S. Haller and H. Jasper, You are what you eat: linking high-fat diet to stem cell dysfunction and tumorigenesis, Cell Stem Cell, vol.18, pp.564-570, 2016.

O. J. Kwon, B. Zhang, L. Zhang, and L. Xin, High fat diet promotes prostatic basalto-luminal differentiation and accelerates initiation of prostate epithelial hyperplasia originated from basal cells, Stem Cell Res, vol.16, pp.682-91, 2016.

G. L. Chen, Y. Luo, D. Eriksson, X. Meng, C. Qian et al., High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6, Differentiation, vol.24, pp.1-17, 2016.

D. P. Labbe, G. Zadra, M. Yang, C. Y. Lin, J. M. Reyes et al., High fat diet accelerates MYC-driven prostate cancer through metabolic and epigenomic rewiring, Cancer Res, p.2674, 2016.

B. J. Brehm, R. J. Seeley, S. R. Daniels, and D. Da, A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women, J Clin Endocrinol Metab, vol.88, pp.1617-1640, 2003.

B. T. Jeon, E. A. Jeong, H. J. Shin, Y. Lee, D. H. Lee et al., Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet, Diabetes, vol.61, pp.1444-54, 2012.

W. S. Yancy, M. Foy, A. M. Chalecki, M. C. Vernon, and E. C. Westman, A lowcarbohydrate, ketogenic diet to treat type 2 diabetes, Nutr Metab, vol.2, p.34, 2005.

J. V. Nielsen and E. A. Joensson, Low-carbohydrate diet in type 2 diabetes: stable improvement of bodyweight and glycemic control during 44 months followup, Nutr Metab, vol.5, p.14, 2008.

S. Basu, P. Yoffe, N. Hills, and R. H. Lustig, The relationship of sugar to populationlevel diabetes prevalence: an econometric analysis of repeated cross-sectional data, PloS ONE, vol.8, p.57873, 2013.

Y. Abudushalamu, A. Visnagri, H. Viswambharan, D. Bonthron, M. Kearney et al., P24 sucrose-and high fat-induced insulin resistance leads to endothelial dysfunction and is associated with ketohexokinase activation, Heart, vol.102, p.9, 2016.

F. B. Talbot, K. M. Metkalf, and M. E. Moriarty, Epilepsy: chemical investigations of rational treatment by production of ketosis, Am J Dis Child, vol.33, pp.218-243, 1927.

H. R. Berthoud, N. R. Lenard, and A. C. Shin, Food reward, hyperphagia, and obesity, Am J Physiol Regul Integr Comp Physiol, vol.300, pp.1266-77, 2011.

E. C. Westman, J. Mavropoulos, W. S. Yancy, and J. S. Volek, A review of lowcarbohydrate ketogenic diets, Curr Atheroscler Rep, vol.5, pp.476-83, 2003.

B. Martin, J. S. Maudsley, S. Mattson, and M. P. , Control" laboratory rodents are metabolically morbid: why it matters, Proc Natl Acad Sci USA, vol.107, pp.6127-6160, 2010.

T. D. Noakes and J. Windt, Evidence that supports the prescription of lowcarbohydrate high-fat diets: a narrative review, Br J Sports Med, vol.51, pp.133-142, 2017.

S. L. Gardener, S. R. Rainey-smith, H. R. Sohrabi, M. Weinborn, G. Verdile et al., Increased carbohydrate intake is associated with poorer performance in verbal memory and attention in an APOE genotype-dependent manner, J Alzheimers Dis, vol.58, pp.193-201, 2017.

H. M. Francis and R. J. Stevenson, Potential for diet to prevent and remediate cognitive deficits in neurological disorders, Nutr Rev, vol.76, pp.204-221, 2018.

N. B. Bueno, I. De-melo, S. L. De-oliveira, and T. Da-rocha-ataide, Very-lowcarbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials, Br J Nutr, vol.110, pp.1178-87, 2013.

F. H. Wojnicki, G. Charny, and R. L. Corwin, Binge-type behavior in rats consuming trans-fat-free shortening, Physiol Behav, vol.94, pp.627-636, 2008.

C. Pickering, J. Alsio, A. L. Hulting, and H. B. Schioth, Withdrawal from freechoice high-fat high-sugar diet induces craving only in obesity-prone animals, Psychopharmacology, vol.204, pp.431-474, 2009.

T. Zilberter, Food addiction and obesity: do macronutrients matter? Front Neuroenerg, vol.4, p.7, 2012.