S. W. Liu, T. Schackel, N. Weidner, and R. Puttagunta, Biomaterial-supported cell transplantation treatments for spinal cord injury: challenges and perspectives, Front, Cell. Neurosci, vol.11, 2018.

M. J. Moore, J. A. Friedman, E. B. Lewellyn, S. M. Mantila, A. J. Krych et al., Multiple-channel scaffolds to promote spinal cord axon regeneration, Biomaterials, vol.27, pp.419-429, 2006.

D. N. Rocha, P. Brites, C. Fonseca, and A. P. Pego, Poly(Trimethylene carbonate-coepsilon-caprolactone) promotes axonal growth, PLoS One, vol.9, 2014.

K. S. Straley, C. W. Foo, and S. C. Heilshorn, Biomaterial design strategies for the treatment of spinal cord injuries, J. Neurotrauma, vol.27, pp.1-19, 2010.

A. E. Haggerty and M. Oudega, Biomaterials for spinal cord repair, Neuroscience Bulletin, vol.29, pp.445-459, 2013.

B. Shrestha, K. Coykendall, Y. C. Li, A. Moon, P. Priyadarshani et al., Repair of injured spinal cord using biomaterial scaffolds and stem cells, Stem Cell Res. Ther, vol.5, 2014.

N. N. Madigan, S. Mcmahon, T. O'brien, M. J. Yaszemski, and A. J. Windebank, Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds, Respir. Physiol. Neurobiol, vol.169, pp.183-199, 2009.

M. Tsintou, K. Dalamagkas, and A. M. Seifalian, Advances in regenerative therapies for spinal cord injury: a biomaterials approach, vol.10, pp.726-742, 2015.

W. Potter, R. E. Kalil, and W. J. Kao, Biomimetic material systems for neural progenitor cell-based therapy, Frontiers in Bioscience-Landmark, vol.13, pp.806-821, 2008.

T. Fuhrmann, P. N. Anandakumaran, and M. S. Shoichet, Combinatorial therapies after spinal cord injury: how can biomaterials help?, Adv. Healthc. Mater, vol.6, 2017.

A. M. Ziemba and R. J. Gilbert, Biomaterials for local, controlled drug delivery to the injured spinal cord, Front. Pharmacol, vol.8, 2017.

D. Macaya and M. Spector, Injectable hydrogel materials for spinal cord regeneration: a review, Biomed. Mater, vol.7, 2012.

O. A. Carballo-molina and I. Velasco, Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries, Front, Cell. Neurosci, vol.9, 2015.

B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, Hydrogels in regenerative medicine, Adv. Mater, vol.21, pp.3307-3329, 2009.

G. Perale, F. Rossi, E. Sundstrom, S. Bacchiega, M. Masi et al., Hydrogels in spinal cord injury repair strategies, ACS Chem. Neurosci, vol.2, pp.336-345, 2011.

D. Gupta, C. H. Tator, and M. S. Shoichet, Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord, Biomaterials, vol.27, pp.2370-2379, 2006.

R. Censi, P. D. Martino, T. Vermonden, and W. E. Hennink, Hydrogels for protein delivery in tissue engineering, J. Control. Release, vol.161, pp.680-692, 2012.

H. K. Kleinman, M. L. Mcgarvey, J. R. Hassell, V. L. Star, F. B. Cannon et al., Basement-membrane complexes with biological-activity, Biochemistry, vol.25, pp.312-318, 1986.

V. M. Tysseling, V. Sahni, E. T. Pashuck, D. Birch, A. Hebert et al., Selfassembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury, J. Neurosci. Res, vol.88, pp.3161-3170, 2010.

A. Hejcl, J. Ruzicka, M. Kapcalova, K. Turnovcova, E. Krumbholcova et al., Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels, Stem Cells Dev, vol.22, pp.2794-2805, 2013.

T. H. Kim, D. B. An, S. H. Oh, M. K. Kang, H. H. Song et al., Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing-thawing method to investigate stem cell differentiation behaviors, Biomaterials, vol.40, pp.51-60, 2015.

P. A. Ramires, M. A. Miccoli, E. Panzarini, L. Dini, and C. Protopapa, In vitro and in vivo biocompatibility evaluation of a polyalkylimide hydrogel for soft tissue augmentation, J. Biomed. Mater. Res. B Appl. Biomater, vol.72, pp.230-238, 2005.

C. Y. Yang, B. B. Song, Y. Ao, A. P. Nowak, R. B. Abelowitz et al., Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system, Biomaterials, vol.30, pp.2881-2898, 2009.

M. F. Rauch, S. R. Hynes, J. Bertram, A. Redmond, R. Robinson et al., Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier, Eur. J. Neurosci, vol.29, pp.132-145, 2009.

V. Pertici, J. Amendola, J. Laurin, D. Gigmes, L. Madaschi et al., The use of poly(N-[2-hydroxypropyl]-methacrylamide) hydrogel to repair a T10 spinal cord hemisection in rat: a behavioural, electrophysiological and anatomical examination, Asn Neuro, vol.5, pp.149-166, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01460474

V. Pertici, T. Trimaille, J. Laurin, M. S. Felix, T. Marqueste et al., Repair of the injured spinal cord by implantation of a synthetic degradable block copolymer in rat, Biomaterials, vol.35, pp.6248-6258, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01475739

V. Estrada, N. Brazda, C. Schmitz, S. Heller, H. Blazyca et al., Longlasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation, Neurobiol. Dis, vol.67, pp.165-179, 2014.

S. Woerly, Hydrogels for neural tissue reconstruction and transplantation, Biomaterials, vol.14, pp.1056-1058, 1993.

S. Woerly, S. Fort, I. Pignot-paintrand, C. Cottet, C. Carcenac et al., Development of a sialic acid-containing hydrogel of poly[N-(2-hydroxypropyl) methacrylamide]: characterization and implantation study, Biomacromolecules, vol.9, pp.2329-2337, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00320167

H. Nomura, Y. Katayama, M. S. Shoichet, and C. H. Tator, Complete spinal cord transection treated by implantation of a reinforced synthetic hydrogel channel results in syringomyelia and caudal migration of the rostral stump, Neurosurgery, vol.59, pp.183-192, 2006.

A. Hejcl, P. Lesny, M. Pradny, J. Michalek, P. Jendelova et al., Biocompatible hydrogels in spinal cord injury repair, Physiol. Res, vol.57, pp.121-132, 2008.

A. Hejcl, L. Urdzikova, J. Sedy, P. Lesny, M. Pradny et al., Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat, J. Neurosurg. Spine, vol.8, pp.67-73, 2008.

A. Hejcl, P. Lesny, M. Pradny, J. Sedy, J. Zamecnik et al., Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair, J. Mater. Sci. Mater. Med, vol.20, pp.1571-1577, 2009.

A. Hejcl, J. Sedy, M. Kapcalova, D. A. Toro, T. Amemori et al., HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury, Stem Cells Dev, vol.19, pp.1535-1546, 2010.

L. R. Pires and A. P. Pego, Bridging the lesion-engineering a permissive substrate for nerve regeneration, Regenerative Biomaterials, vol.2, pp.203-214, 2015.

M. Bonnet, Materials Science & Engineering C, vol.107, p.110354, 2020.

E. C. Tsai, P. D. Dalton, M. S. Shoichet, and C. H. Tator, Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection, J. Neurotrauma, vol.21, pp.789-804, 2004.

X. B. Kong, Q. Y. Tang, X. Y. Chen, Y. Tu, S. Z. Sun et al., Polyethylene glycol as a promising synthetic material for repair of spinal cord injury, Neural Regeneration Research, vol.12, pp.1003-1008, 2017.

J. Luo, R. Borgens, and R. Y. Shi, Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury, J. Neurotrauma, vol.21, pp.994-1007, 2004.

E. Sykova, P. Jendelova, L. Urdzikova, P. Lesny, and A. Hejcl, Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair, Cell. Mol. Neurobiol, vol.26, pp.1113-1129, 2006.

E. Sykova and P. Jendelova, In vivo tracking of stem cells in brain and spinal cord injury, Neurotrauma: New Insights into Pathology and Treatment, vol.161, pp.367-383, 2007.

P. D. Dalton, L. Flynn, and M. S. Shoichet, Manufacture of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels, Biomaterials, vol.23, pp.3843-3851, 2002.

S. Giannetti, L. Lauretti, E. Fernandez, F. Salvinelli, G. Tamburrini et al., Acrylic hydrogel implants after spinal cord lesion in the adult rat, Neurol. Res, vol.23, pp.405-409, 2001.

J. S. Katz and J. A. Burdick, Hydrogel mediated delivery of trophic factors for neural repair, Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, vol.1, pp.128-139, 2009.

M. M. Pakulska, B. G. Ballios, and M. S. Shoichet, Injectable hydrogels for central nervous system therapy, Biomed. Mater, vol.7, 2012.

J. Guo, H. Su, Y. Zeng, Y. X. Liang, W. M. Wong et al., Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold, Nanomed. Nanotechnol. Biol. Med, vol.3, pp.311-321, 2007.

V. M. Tysseling-mattiace, V. Sahni, K. L. Niece, D. Birch, C. Czeisler et al., Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury, J. Neurosci, vol.28, pp.3814-3823, 2008.

Y. Liu, H. Ye, K. Satkunendrarajah, G. S. Yao, Y. Bayon et al., A selfassembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury, Acta Biomater, vol.9, pp.8075-8088, 2013.

J. Piantino, J. A. Burdick, D. Goldberg, R. Langer, and L. I. Benowitz, An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury, Exp. Neurol, vol.201, pp.359-367, 2006.

L. Klouda and A. G. Mikos, Thermoresponsive hydrogels in biomedical applications, Eur. J. Pharm. Biopharm, vol.68, pp.34-45, 2008.

L. S. Yap and M. C. Yang, Evaluation of hydrogel composing of Pluronic F127 and carboxymethyl hexanoyl chitosan as injectable scaffold for tissue engineering applications, Colloids Surfaces B Biointerfaces, vol.146, pp.204-211, 2016.

I. M. Diniz, C. Chen, X. T. Xu, S. Ansari, H. H. Zadeh et al., Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells, J. Mater. Sci. Mater. Med, vol.26, 2015.

S. F. Nie, W. L. Hsiao, W. S. Pan, and Z. J. Yang, Thermoreversible Pluronic (R) F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies, Int. J. Nanomed, vol.6, pp.151-166, 2011.

J. M. Barichello, M. Morishita, K. Takayama, and T. Nagai, Absorption of insulin from Pluronic F-127 gels following subcutaneous administration in rats, Int. J. Pharm, vol.184, pp.189-198, 1999.

M. Guzman, F. F. Garcia, J. Molpeceres, and M. R. Aberturas, Polyoxyethylene-polyoxypropylene block copolymer gels as sustained-release vehicles for subcutaneous drug administration, Int. J. Pharm, vol.80, pp.119-127, 1992.

Y. Yang, J. C. Wang, X. Zhang, W. L. Lu, and Q. Zhang, A novel mixed micelle gel with thermo-sensitive property for the local delivery of docetaxel, J. Control. Release, vol.135, pp.175-182, 2009.

D. F. Liu, T. Jiang, W. H. Cai, J. Chen, H. B. Zhang et al., An in situ gelling drug delivery system for improved recovery after spinal cord injury, Adv. Healthc. Mater, vol.5, pp.1513-1521, 2016.

P. Z. Elias, G. W. Liu, H. Wei, M. C. Jensen, P. J. Horner et al., A functionalized, injectable hydrogel for localized drug delivery with tunable thermosensitivity: synthesis and characterization of physical and toxicological properties, J. Control. Release, vol.208, pp.76-84, 2015.

S. S. Zhang, J. E. Burda, M. A. Anderson, Z. R. Zhao, Y. Ao et al., Thermoresponsive copolypeptide hydrogel vehicles for central nervous system cell delivery, ACS Biomater. Sci. Eng, vol.1, pp.705-717, 2015.

L. Chen, X. Q. Li, L. P. Cao, X. L. Li, J. R. Meng et al., An injectable hydrogel with or without drugs for prevention of epidural scar adhesion after laminectomy in rats, Chin. J. Polym. Sci, vol.34, pp.147-163, 2016.

L. T. Hong, Y. M. Kim, H. H. Park, D. H. Hwang, Y. Cui et al., An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling, Nat. Commun, vol.8, 2017.

W. R. Kim, M. J. Kang, H. Park, H. J. Ham, H. Lee et al., Functional test scales for evaluating cell-based therapies in animal models of spinal cord injury, Stem Cell, 2017.

L. Klouda, K. R. Perkins, B. M. Watson, M. C. Hacker, S. J. Bryant et al., Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation, Acta Biomater, vol.7, pp.1460-1467, 2011.

J. Vernengo, G. W. Fussell, N. G. Smith, and A. M. Lowman, Evaluation of novel injectable hydrogels for nucleus pulposus replacement, J. Biomed. Mater. Res. B Appl. Biomater, vol.84, pp.64-69, 2008.

S. Fujishige, K. Kubota, and I. Ando, Phase-transition of aqueous-solutions of poly(Nisopropylacrylamide) and poly(N-isopropylmethacrylamide), J. Phys. Chem, vol.93, pp.3311-3313, 1989.

E. S. Gil and S. M. Hudson, Stimuli-reponsive polymers and their bioconjugates, vol.29, pp.1173-1222, 2004.

M. Ebara, M. Yamato, M. Hirose, T. Aoyagi, A. Kikuchi et al., Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature, Biomacromolecules, vol.4, pp.344-349, 2003.

Y. Shi, C. B. Ma, L. L. Peng, and G. H. Yu, Conductive "smart" hybrid hydrogels with PNIPAM and nanostructured conductive polymers, Adv. Funct. Mater, vol.25, pp.1219-1225, 2015.

Y. Y. Liu, Y. H. Shao, and J. Lu, Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels, Biomaterials, vol.27, pp.4016-4024, 2006.

H. Hatakeyama, A. Kikuchi, M. Yamato, and T. Okano, Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation, Biomaterials, vol.27, pp.5069-5078, 2006.

M. Nakayama, T. Okano, T. Miyazaki, F. Kohori, K. Sakai et al., Molecular design of biodegradable polymeric micelles for temperature-responsive drug release, J. Control. Release, vol.115, pp.46-56, 2006.

D. C. Coughlan, F. P. Quilty, and O. I. Corrigan, Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels, J. Control. Release, vol.98, pp.97-114, 2004.

K. Na, J. H. Park, S. W. Kim, B. K. Sun, D. G. Woo et al., Delivery of dexamethasone, ascorbate, and growth factor (TGF beta-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes, Biomaterials, vol.27, pp.5951-5957, 2006.

A. Chilkoti, M. R. Dreher, D. E. Meyer, and D. Raucher, Targeted drug delivery by thermally responsive polymers, Adv. Drug Deliv. Rev, vol.54, pp.613-630, 2002.

X. Yin, A. S. Hoffman, and P. S. Stayton, Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH, Biomacromolecules, vol.7, pp.1381-1385, 2006.

A. Alexander, J. Ajazuddin, S. Khan, S. Saraf, and . Saraf, Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications, Eur. J. Pharm. Biopharm, vol.88, pp.575-585, 2014.

N. Comolli, B. Neuhuber, I. Fischer, and A. Lowman, In vitro analysis of PNIPAAm-PEG, a novel, injectable scaffold for spinal cord repair, Acta Biomater, vol.5, pp.1046-1055, 2009.

A. M. Akimoto, E. Hasuike, H. Tada, K. Nagase, T. Okano et al., Design of tetra-arm PEG-crosslinked thermoresponsive hydrogel for 3D cell culture, Anal. Sci, vol.32, pp.1203-1205, 2016.

L. Conova, J. Vernengo, Y. Jin, B. T. Himes, B. Neuhuber et al., A pilot study of poly(N-isopropylacrylamide)-g-polyethylene glycol and poly(N-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord, J. Neurosurg. Spine, vol.15, pp.594-604, 2011.

L. C. Grous, J. Vernengo, Y. Jin, B. T. Himes, J. S. Shumsky et al., Implications of poly(N-isopropylacrylamide)-g-poly(ethylene glycol) with codissolved brain-derived neurotrophic factor injectable scaffold on motor function recovery rate following cervical dorsolateral funiculotomy in the rat, J. Neurosurg. Spine, vol.18, pp.641-652, 2013.

S. D. Girard, A. Deveze, E. Nivet, B. Gepner, F. S. Roman et al., Isolating nasal olfactory stem cells from rodents or humans, Jove-Journal of Visualized Experiments, vol.54, p.2762, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01736206

Y. Gueye, T. Marqueste, F. Maurel, M. Khrestchatisky, P. Decherchi et al., Cholecalciferol (vitamin D-3) improves functional recovery when delivered during the acute phase after a spinal cord trauma, J. Steroid Biochem. Mol. Biol, vol.154, pp.23-31, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02282159

K. Nawrotek, T. Marqueste, Z. Modrzejewska, R. Zarzycki, A. Rusak et al., Thermogelling chitosan lactate hydrogel improves functional recovery after a C2 spinal cord hemisection in rat, J. Biomed. Mater. Res. A, vol.105, pp.2004-2019, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691143

H. G. Kuypers, Anatomy of Descending Pathways, Comprehensive Physiology, pp.597-655, 1981.

P. J. Harrison, H. Hultborn, E. Jankowska, R. Katz, B. Storai et al., Labeling of interneurones by retrograde transsynaptic transport of horseradish-peroxidase from motoneurones in rats and cats, Neurosci. Lett, vol.45, pp.15-19, 1984.

P. Decherchi and P. Gauthier, Regeneration of acutely and chronically injured descending respiratory pathways within post-traumatic nerve grafts, Neuroscience, vol.112, pp.141-152, 2002.

M. Martinez, J. M. Brezun, L. Bonnier, and C. Xerri, A new rating scale for open-field evaluation of behavioral recovery after cervical spinal cord injury in rats, J. Neurotrauma, vol.26, pp.1043-1053, 2009.

Y. Li, P. Decherchi, and G. Raisman, Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing, J. Neurosci, vol.23, pp.727-731, 2003.

G. A. Metz and I. Q. Whishaw, Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore-and hindlimb stepping, placing, and co-ordination, J. Neurosci. Methods, vol.115, pp.169-179, 2002.

K. D. Anderson, A. Gunawan, and O. Steward, Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract, Exp. Neurol, vol.194, pp.161-174, 2005.

E. Ezer and L. Szporny, Tape test as a simple new method for study of compounds increasing problem-solving ability of rat, Psychopharmacology, vol.48, pp.97-99, 1976.

N. D. Fagoe, C. L. Attwell, R. Eggers, L. Tuinenbreijer, D. Kouwenhoven et al., Evaluation of five tests for sensitivity to functional deficits following cervical or thoracic dorsal column transection in the rat, PLoS One, vol.11, 2016.

J. Bianco, Y. Gueye, T. Marqueste, O. Alluin, J. J. Risso et al., Vitamin D-3 improves respiratory adjustment to fatigue and H-reflex responses in paraplegic adult rats, Neuroscience, vol.188, pp.182-192, 2011.

G. Caron, T. Marqueste, and P. Decherchi, Restoration of post-activation depression of the H-reflex by treadmill exercise in aged rats, Neurobiol. Aging, vol.42, pp.61-68, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01454777

F. J. Thompson, P. J. Reier, C. C. Lucas, and R. Parmer, Altered patterns of reflex excitability subsequent to contusion injury of the rat spinal-cord, J. Neurophysiol, vol.68, pp.1473-1486, 1992.

R. D. Skinner, J. D. Houle, N. B. Reese, C. L. Berry, and E. Garciarill, Effects of exercise and fetal spinal cord implants on the H-reflex in chronically spinalized adult rats, Brain Res, vol.729, pp.127-131, 1996.

H. J. Lee, I. Jakovcevski, N. Radonjic, L. Hoelters, M. Schachner et al., Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses, Exp. Neurol, vol.216, pp.365-374, 2009.

J. K. Lee, G. S. Emch, C. S. Johnson, and J. R. Wrathall, Effect of spinal cord injury severity on alterations of the H-reflex, Exp. Neurol, vol.196, pp.430-440, 2005.

N. B. Reese, R. D. Skinner, D. Mitchell, C. Yates, C. N. Barnes et al., Restoration of frequency-dependent depression of the H-reflex by passive exercise in spinal rats, Spinal Cord, vol.44, pp.28-34, 2006.

P. Decherchi, E. Dousset, and Y. Jammes, Respiratory and cardiovascular responses evoked by tibialis anterior muscle afferent fibers in rats, Exp. Brain Res, vol.183, pp.299-312, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00300609

M. C. Hacker, L. Klouda, B. B. Ma, J. D. Kretlow, and A. G. Mikos, Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(Nisopropylacrylamide)-based macromers, Biomacromolecules, vol.9, pp.1558-1570, 2008.

P. Caliceti and F. M. Veronese, Pharmacokinetic and biodistribution properties of poly (ethylene glycol)-protein conjugates, Adv. Drug Deliv. Rev, vol.55, pp.1261-1277, 2003.

A. Karimi, A. Shojaei, and P. Tehrani, Mechanical properties of the human spinal cord under the compressive loading, J. Chem. Neuroanat, vol.86, pp.15-18, 2017.

A. S. Wadajkar, B. Koppolu, M. Rahimi, and K. T. Nguyen, Cytotoxic evaluation of Nisopropylacrylamide monomers and temperature-sensitive poly(N-isopropylacrylamide) nanoparticles, J. Nanoparticle Res, vol.11, pp.1375-1382, 2009.

H. Vihola, A. Laukkanen, L. Valtola, H. Tenhu, and J. Hirvonen, Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam), vol.26, pp.3055-3064, 2005.

M. Tunesi, S. Chierchia, S. Rodilossi, T. Russo, A. Gloria et al., Development and analysis of PNIPAAM and PNIPAL/PEG hydrogels for brain neurodegeneration, I materiali biocompatibili per la medicina, 2014.

M. Adil, T. Gaj, A. Rao, R. Kulkarni, C. Fuentes et al., hESC-derived striatal cells generated in a 3D hydrogel promote recovery in a huntington's disease mouse model, Mol. Ther, vol.26, pp.33-33, 2018.

M. M. Adil, T. Gaj, A. T. Rao, R. U. Kulkarni, C. M. Fuentes et al., hPSC-derived striatal cells generated using a scalable 3D hydrogel promote recovery in a Huntington disease mouse model, Stem Cell Reports, vol.10, pp.1481-1491, 2018.

M. M. Adil, G. M. Rodrigues, R. U. Kulkarni, A. T. Rao, N. E. Chernavsky et al., Efficient generation of hPSC-derived midbrain dopaminergic neurons in a fully defined, scalable, 3D biomaterial platform, Sci. Rep, vol.7, 2017.

M. M. Adil, T. Vazin, B. Ananthanarayanan, G. M. Rodrigues, A. T. Rao et al., Engineered hydrogels increase the post-transplantation survival of encapsulated hESC-derived midbrain dopaminergic neurons, Biomaterials, vol.136, pp.1-11, 2017.

A. K. Varma, A. Das, G. Wallace, J. Barry, A. A. Vertegel et al., Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers, Neurochem. Res, vol.38, pp.895-905, 2013.

N. A. Silva, N. Sousa, R. L. Reis, and A. J. Salgado, From basics to clinical: a comprehensive review on spinal cord injury, Prog. Neurobiol, vol.114, pp.25-57, 2014.

C. S. Ahuja, S. Nori, L. Tetreault, J. Wilson, B. Kwon et al., Traumatic spinal cord injury-repair and regeneration, Neurosurgery, vol.80, pp.9-22, 2017.

C. S. Ahuja, J. R. Wilson, S. Nori, M. R. Kotter, C. Druschel et al., Traumatic spinal cord injury, Nature Reviews Disease Primers, vol.3, 2017.

Y. D. Teng, E. B. Lavik, X. L. Qu, K. I. Park, J. Ourednik et al., Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.9606-9606, 2002.

B. Tom, J. Witko, M. Lemay, and A. Singh, Effects of bioengineered scaffold loaded with neurotrophins and locomotor training in restoring H-reflex responses after spinal cord injury, Exp. Brain Res, vol.236, pp.3077-3084, 2018.

K. Y. Lee and D. J. Mooney, Hydrogels for tissue engineering, Chem. Rev, vol.101, pp.1869-1879, 2001.

X. D. Xu, H. Wei, X. Z. Zhang, S. X. Cheng, and R. X. Zhuo, Fabrication and characterization of a novel composite PNIPAAm hydrogel for controlled drug release, J. Biomed. Mater. Res. A, vol.81, pp.418-426, 2007.

S. Vijayasekaran, T. V. Chirila, T. A. Robertson, X. Lou, J. H. Fitton et al., Calcification of poly(2-hydroxyethyl methacrylate) hydrogel sponges implanted in the rabbit cornea: a 3-month study, J. Biomater. Sci. Polym. Ed, vol.11, pp.599-615, 2000.

L. P. Hiersemenzel, A. Curt, and V. Dietz, From spinal shock to spasticity -neuronal adaptations to a spinal cord injury, Neurology, vol.54, pp.1574-1582, 2000.

A. Frigon and S. Rossignol, Functional plasticity following spinal cord lesions, Reprogramming the Brain, vol.157, p.231, 2006.

H. Hultborn, Changes in neuronal properties and spinal reflexes during development of spasticity following spinal cord lesions and stroke: studies in animal models and patients, J. Rehabil. Med, vol.35, pp.46-55, 2003.

Y. R. Li and D. J. Bennett, Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats, J. Neurophysiol, vol.90, pp.857-869, 2003.

I. Engberg, A. Lundberg, and R. W. Ryall, Reticulospinal inhibition of interneurons, J. Physiol, vol.194, pp.225-236, 1968.

I. Engberg, A. Lundberg, and R. W. Ryall, Reticulospinal inhibition of transmission in reflex pathway, J. Physiol, vol.194, pp.201-223, 1968.

A. Bakshi, O. Fisher, T. Dagci, B. T. Himes, I. Fischer et al., Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury, J. Neurosurg. Spine, vol.1, pp.322-329, 2004.

C. A. Tobias, N. O. Dhoot, M. A. Wheatley, A. Tessler, M. Murray et al., Grafting of encapsulated BDNF-producing fibroblasts into the injured spinal cord without immune suppression in adult rats, J. Neurotrauma, vol.18, pp.287-301, 2001.

C. A. Tobias, S. S. Han, J. S. Shumsky, D. Kim, M. Tumolo et al., Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression, J. Neurotrauma, vol.22, pp.138-156, 2005.

S. W. Liu, B. Sandner, T. Schackel, L. Nicholson, A. Chtarto et al., Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury, Acta Biomater, vol.60, pp.167-180, 2017.

Y. L. Wang, M. Wu, L. Gu, X. L. Li, J. He et al., Effective improvement of the neuroprotective activity after spinal cord injury by synergistic effect of glucocorticoid with biodegradable amphipathic nanomicelles, Drug Deliv, vol.24, pp.391-401, 2017.