, GSE14308 Genes up-regulated in comparison of Th2 cells versus naive CD4, pp.42-46

, GSE17721 Genes up-regulated in comparison of control dendritic cells (DC) at 12 h versus those stimulated with LPS, vol.12

, GSE14769 Genes up-regulated in comparison of unstimulated macrophage cells versus macrophage cells stimulated with LPS (TLR4 agonist) for 120 min

, GSE14000 Genes up-regulated in comparison of dendritic cells (DC) before and 4 h after LPS (TLR4 agonist) stimulation. 1,65E-05 1, pp.75-78

, GSE11864 Genes up-regulated in comparison of untreated macrophages versus those cultured with M-CSF

, GSE18791 Genes up-regulated in comparison of control conventional dendritic cells (cDC) at 10 h versus cDCs infected with Newcastle disease virus (NDV) at 10 h, vol.1, pp.50-53

, GSE17974 Genes up-regulated in comparison of CD4

, GSE15930 Genes down-regulated in comparison of CD8 T cells at 0 h versus those at 24 h after stimulation with IL12, vol.5, pp.79-81

, GSE22886 Genes up-regulated in comparison of naive CD4, pp.13-15

, GSE25087 Genes down-regulated in comparison of fetal regulatory T cell (Treg) versus fetal conventional T cells. 1,45E-03, vol.2, pp.75-77

, GSE24634 Genes up-regulated in comparison of CD25+ T cells treated with IL4, vol.3, pp.11-13

, GSE9988 Genes down-regulated in comparison of monocytes treated with anti-TREM1 [GeneID = 54,210] and 5000 ng/ml LPS (TLR4 agonist) versus monocytes treated with control IgG, vol.2, pp.77-79

, GSE14308 Genes down-regulated in comparison of Th1 cells versus induced regulatory T cell (Treg). 3,90E-03, vol.4, pp.81-83

, GSE13229 Genes down-regulated in comparison of mature NK cells versus intermediate mature NK cells, vol.4, pp.26-28

, GSE13306 Genes up-regulated in comparison of CD4 [GeneID = 920] T cells activated with lamina propria dendritic cells versus regulatory T cell (Treg)

, GSE26495 Genes up-regulated in comparison of naive CD8 T cells versus PD-1 low CD8 T cells, vol.8, pp.74-76

, GSE17580 Genes down-regulated in comparison of regulatory T cell (Treg) from uninfected mice versus regulatory T cell (Treg) from mice infected with S. mansoni, vol.8, pp.85-87

, GSE14308 Genes up-regulated in comparison of Th2 cells versus natural regulatory T cell (Treg), vol.8, pp.86-88

, GSE22886 Genes up-regulated in comparison of naive CD4, pp.67-69

, GSE9650 Genes up-regulated in comparison of effector CD8 T cells versus exhausted CD8 T cells. 1,64E-05 1, pp.84-87

, GSE25087 Genes down-regulated in comparison of fetal regulatory T cell (Treg) versus fetal conventional T cells. 1,45E-03, vol.2, pp.75-77

, Genova: World Health Organization, WHO. World Malaria Report, 2016.

L. Manning, M. Laman, W. A. Davis, and T. M. Davis, Clinical features and outcome in children with severe Plasmodium falciparum malaria: a meta-analysis, PLoS One, vol.9, issue.2, p.86737, 2014.

G. Band, Q. S. Le, L. Jostins, M. Pirinen, K. Kivinen et al., Imputation-based meta-analysis of severe malaria in three African populations, PLoS Genet, vol.9, issue.5, p.1003509, 2013.

M. Jallow, Y. Y. Teo, K. S. Small, K. A. Rockett, P. Deloukas et al., Genome-wide and fine-resolution association analysis of malaria in West Africa, Nat Genet, vol.41, issue.6, pp.657-65, 2009.

C. Timmann, T. Thye, M. Vens, J. Evans, J. May et al., Genome-wide association study indicates two novel resistance loci for severe malaria, Nature, vol.489, issue.7416, pp.443-449, 2012.

Y. Y. Teo, K. S. Small, and D. P. Kwiatkowski, Methodological challenges of genomewide association analysis in Africa, Nat Rev Genet, vol.11, issue.2, pp.149-60, 2010.

N. F. Delahaye, N. Coltel, D. Puthier, M. Barbier, P. Benech et al., Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice, BMC Genomics, vol.8, p.452, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01595820

N. F. Delahaye, N. Coltel, D. Puthier, L. Flori, R. Houlgatte et al., Gene-expression profiling discriminates between cerebral malaria (CM)-susceptible mice and CM-resistant mice, J Infect Dis, vol.193, issue.2, pp.312-333, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00276272

M. Barbier, D. Faille, B. Loriod, J. Textoris, C. Camus et al., Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria, PLoS One, vol.6, issue.5, p.19651, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01743259

C. M. Feintuch, A. Saidi, K. Seydel, G. Chen, A. Goldman-yassen et al., Activated neutrophils are associated with pediatric cerebral malaria vasculopathy in Malawian children, MBio, vol.7, issue.1, pp.1300-1315, 2016.

M. Krupka, K. Seydel, C. M. Feintuch, K. Yee, R. Kim et al., Mild Plasmodium falciparum malaria following an episode of severe malaria is associated with induction of the interferon pathway in Malawian children, Infect Immun, vol.80, issue.3, pp.1150-1155, 2012.

R. S. Sobota, A. Dara, J. E. Manning, A. Niangaly, J. A. Bailey et al., Expression of complement and tolllike receptor pathway genes is associated with malaria severity in Mali: a pilot case control study, Malar J, vol.15, p.150, 2016.

S. Cabantous, O. Doumbo, B. Poudiougou, L. Louis, A. Barry et al., Gene expression analysis reveals genes common to cerebral malaria and neurodegenerative disorders, J Infect Dis, vol.216, issue.6, pp.771-776, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01902060

G. Q. Tonkin-hill, L. Trianty, R. Noviyanti, H. Nguyen, B. F. Sebayang et al., The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen-encoding var genes, PLoS Biol, vol.16, issue.3, p.2004328, 2018.

T. Almelli, G. Nuel, E. Bischoff, A. Aubouy, M. Elati et al., Differences in gene transcriptomic pattern of Plasmodium falciparum in children with cerebral malaria and asymptomatic carriers, PLoS One, vol.9, issue.12, p.114401, 2014.

A. Thiam, S. Baaklini, B. Mbengue, S. Nisar, M. Diarra et al., NCR3 polymorphism, haematological parameters, and severe malaria in Senegalese patients, PeerJ, vol.6, p.6048, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01947567

, Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster, Trans R Soc Trop Med Hyg, vol.94, issue.1, pp.1-90, 2000.

G. Didier, P. Brezellec, R. E. Henaut, and A. , GeneANOVA--gene expression analysis of variance, Bioinformatics, vol.18, issue.3, pp.490-491, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01614111

A. I. Saeed, V. Sharov, J. White, J. Li, W. Liang et al., TM4: a free, open-source system for microarray data management and analysis, Biotechniques, vol.34, issue.2, pp.374-382, 2003.

M. V. Kuleshov, M. R. Jones, A. D. Rouillard, N. F. Fernandez, Q. Duan et al., Enrichr: a comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Res, vol.44, issue.W1, pp.90-97, 2016.

J. Xia, M. J. Benner, and R. E. Hancock, NetworkAnalyst--integrative approaches for protein-protein interaction network analysis and visual exploration, Nucleic Acids Res, vol.42, pp.167-74, 2014.

C. Y. Mclean, D. Bristor, M. Hiller, S. L. Clarke, B. T. Schaar et al., GREAT improves functional interpretation of cis-regulatory regions, Nat Biotechnol, vol.28, issue.5, pp.495-501, 2010.

K. Breuer, A. K. Foroushani, M. R. Laird, C. Chen, A. Sribnaia et al., InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation, Nucleic Acids Res, vol.41, pp.1228-1261, 2013.

S. Nallandhighal, G. S. Park, Y. Y. Ho, R. O. Opoka, C. C. John et al., Whole-blood transcriptional signatures composed of erythropoietic and Nrf2-regulated genes differ between cerebral malaria and severe malarial anemia, J Infect Dis, vol.219, issue.1, pp.154-64

P. E. Thuma, J. Van-dijk, R. Bucala, Z. Debebe, S. Nekhai et al., Distinct clinical and immunologic profiles in severe malarial anemia and cerebral malaria in Zambia, J Infect Dis, vol.203, issue.2, pp.211-220, 2011.

M. S. Oakley, V. Anantharaman, T. M. Venancio, H. Zheng, B. Mahajan et al., Molecular correlates of experimental cerebral malaria detectable in whole blood, Infect Immun, vol.79, issue.3, pp.1244-53, 2011.

X. Wang, X. Zhou, G. Li, Y. Zhang, Y. Wu et al., Modifications and trafficking of APP in the pathogenesis of Alzheimer's disease, Front Mol Neurosci, vol.10, p.294, 2017.

A. V. Grant, C. Roussilhon, R. Paul, and A. Sakuntabhai, The genetic control of immunity to Plasmodium infection, BMC Immunol, vol.16, p.14, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01402406

L. Schofield and G. E. Grau, Immunological processes in malaria pathogenesis, Nat Rev Immunol, vol.5, issue.9, pp.722-757, 2005.

H. C. Van-der-heyde, J. Nolan, V. Combes, I. Gramaglia, and G. E. Grau, A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction, Trends Parasitol, vol.22, issue.11, pp.503-511, 2006.

N. Ghazanfari, S. N. Mueller, and W. R. Heath, Cerebral malaria in mouse and man, Front Immunol, vol.9, 2016.

E. M. Riley and V. A. Stewart, Immune mechanisms in malaria: new insights in vaccine development, Nat Med, vol.19, issue.2, pp.168-78, 2013.

S. Mecheri, Contribution of allergic inflammatory response to the pathogenesis of malaria disease, Biochim Biophys Acta, vol.1822, issue.1, pp.49-56, 2012.

S. W. Howland, C. Claser, C. M. Poh, S. Y. Gun, and L. Renia, Pathogenic CD8+ T cells in experimental cerebral malaria, Semin Immunopathol, vol.37, issue.3, pp.221-252, 2015.

S. W. Howland, C. M. Poh, and L. Renia, Activated brain endothelial cells crosspresent malaria antigen, PLoS Pathog, vol.11, issue.6, p.1004963, 2015.

R. Razakandrainibe, S. Pelleau, G. E. Grau, and R. Jambou, Antigen presentation by endothelial cells: what role in the pathophysiology of malaria?, Trends Parasitol, vol.28, issue.4, pp.151-60, 2012.

A. Scholzen, G. Minigo, and M. Plebanski, Heroes or villains? T regulatory cells in malaria infection, Trends Parasitol, vol.26, issue.1, pp.16-25, 2010.

Y. Idaghdour, J. Quinlan, J. P. Goulet, J. Berghout, E. Gbeha et al., Evidence for additive and interaction effects of host genotype and infection in malaria, Proc Natl Acad Sci, vol.109, issue.42, pp.16786-93, 2012.

K. Artavanis-tsakonas, K. Eleme, K. L. Mcqueen, N. W. Cheng, P. Parham et al., Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes, J Immunol, vol.171, issue.10, pp.5396-405, 2003.

A. S. Wolf, S. Sherratt, and E. M. Riley, NK cells: uncertain allies against malaria, Front Immunol, vol.8, p.212, 2017.

W. Ye, M. Chew, J. Hou, F. Lai, S. J. Leopold et al., Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5 pathway, PLoS Pathog, vol.14, issue.10, p.1007298, 2018.

A. M. Ranzoni, P. M. Strzelecka, and A. Cvejic, Application of single-cell RNA sequencing methodologies in understanding haematopoiesis and immunology, Essays Biochem, vol.63, issue.2, pp.217-242, 2019.

J. Dunst, F. Kamena, and K. Matuschewski, Cytokines and chemokines in cerebral malaria pathogenesis, Front Cell Infect Microbiol, vol.7, p.324, 2017.

J. Lou, R. Lucas, and G. E. Grau, Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans, Clin Microbiol Rev, vol.14, issue.4, pp.810-830, 2001.

E. M. Riley, K. N. Couper, H. Helmby, J. C. Hafalla, J. B. De-souza et al., Neuropathogenesis of human and murine malaria, Trends Parasitol, vol.26, issue.6, pp.277-285, 2010.

N. J. White, G. D. Turner, I. M. Medana, A. M. Dondorp, and N. P. Day, The murine cerebral malaria phenomenon, Trends Parasitol, vol.26, issue.1, pp.11-16, 2010.

P. Strangward, M. J. Haley, T. N. Shaw, J. M. Schwartz, R. Greig et al., A quantitative brain map of experimental cerebral malaria pathology, PLoS Pathog, vol.13, issue.3, 2017.