M. Basler, M. Pilhofer, G. P. Henderson, G. J. Jensen, and J. J. Mekalanos, Type VI secretion 433 requires a dynamic contractile phage tail-like structure, Nature, vol.483, pp.182-186, 2012.

Y. R. Brunet, L. Espinosa, S. Harchouni, T. Mignot, and E. Cascales, Imaging type VI secretion-435 mediated bacterial killing, Cell Rep, vol.3, pp.36-41, 2013.

M. Basler, Type VI secretion system: secretion by a contractile nanomachine, Philos Trans R Soc, vol.437

, Lond B Biol Sci, vol.370, p.1679, 2015.

A. Zoued, Architecture and assembly of the Type VI secretion system, Biochim Biophys Acta, vol.439, issue.1843, pp.1664-1673, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458220

E. Durand, C. Cambillau, E. Cascales, L. Journet, and T. Vgrg, Tle, and beyond: the versatile 441 arsenal of Type VI secretion effectors, Trends Microbiol, vol.22, pp.498-507, 2014.

B. T. Ho, T. G. Dong, and J. J. Mekalanos, A view to a kill: the bacterial type VI secretion system

, Cell Host Microbe, vol.15, pp.9-21, 2014.

F. R. Cianfanelli, L. Monlezun, and S. J. Coulthurst, Aim, load, fire: the type VI secretion system, a 445 bacterial nanoweapon, Trends Microbiol, vol.24, pp.51-62, 2016.

M. Brackmann, S. Nazarov, J. Wang, and M. Basler, Using force to punch holes: mechanics of 447 contractile nanomachines, Trends Cell Biol, vol.27, pp.623-632, 2017.

A. B. Russell, S. B. Peterson, and J. D. Mougous, Type VI secretion system effectors: poisons with a 449 purpose, Nat Rev Microbiol, vol.12, pp.137-148, 2014.

A. Diniz, J. Liu, Y. C. Coulthurst, and S. J. , Molecular weaponry: diverse effectors 451 delivered by the Type VI secretion system, Cell Microbiol, vol.17, pp.1742-1751, 2015.

, Total extracts (T) of WT or ?sci1 EAEC, or E. coli K-12 cells producing V TagA were 632 subjected to fractionation to separate the soluble (S) and membrane (M) fractions

, Control markers include the integral outer membrane OmpA protein, 635 the integral inner membrane TolA protein, the peripherally-associated membrane TolB 636 protein, and the EF-Tu cytoplasmic elongation factor. Molecular weight markers (in kDa) are 637 indicated on left

, Uncropped blots are shown in Supplementary Fig, vol.7

, Figure 3 | TagA localizes at the cell quarters and binds the distal end of the sheath, p.640

, Fluorescence microscopy recordings have been 643 performed thirty times with identical results. A deconvolution analysis of WT EAEC cells 644 producing sfGFP-TagA is shown in Supplementary Fig. 4a. b, Number of sfGFP-TagA foci 645 per cell. The percentage of cells with 0, 1, 2 or >2 foci is indicated (n= 1171 cells from three 646 biological replicates, bars represent the average, standard deviation are indicated, dot plots 647 (grey circles) are overlaid). The mean number of foci per cell is 0.74 ± 0.24. c, Spatial 648 repartition of sfGFP-TagA foci. Shown is a projection of the foci from n = 316 cells on a 649 single cell (from blue (low abundance) to yellow (high abundance)). d, Fluorescence 650 microscopy time-lapse recording of EAEC cells producing sfGFP-TagA. Individual images 651 were taken every 40 s. The localization of TagA is indicated by the white arrowhead, Fluorescence microscopy recording of wild-type EAEC cells producing sfGFP-TagA

, Time-lapse recordings have been performed thirty times with identical results. A statistical 654 analyses of the distribution of sfGFP-TagA dynamics in wild-type and ?sci1 cells is shown in 655

, Supplementary Fig. 4b. e and f, Co-localization of sfGFP-TagA with TssB-mCherry (e) or