A. Zoued, J. P. Duneau, E. Durand, A. P. España, L. Journet et al., Tryptophan-mediated dimerization of the TssL transmembrane anchor is 470 required for type VI secretion system activity, J Mol Biol, vol.430, pp.987-1003, 2018.

A. Zoued, E. Durand, C. Bebeacua, Y. R. Brunet, B. Douzi et al., , p.472

L. Journet, TssK is a trimeric cytoplasmic protein interacting with components 473 of both phage-like and membrane anchoring complexes of the type VI secretion 474 system, J Biol Chem, vol.288, pp.27031-27041, 2013.

V. S. Nguyen, L. Logger, S. Spinelli, P. Legrand, H. Pham et al., , p.476

Y. Cherrak, A. Zoued, A. Desmyter, E. Durand, A. Roussel et al., , p.477

E. Cascales and C. Cambillau, Type VI secretion TssK baseplate protein exhibits 478 structural similarity with phage receptor-binding proteins and evolved to bind the 479 membrane complex, Nat Microbiol, vol.2, p.17103, 2017.

C. Rapisarda, Y. Cherrak, R. Kooger, V. Schmidt, R. Pellarin et al., In situ and high-resolution cryo-EM 482 structure of the type VI secretion membrane complex, EMBO J in press, vol.483, 2019.

M. Yin, Z. Yan, and X. Li, Architecture of type VI secretion system membrane core 485 complex, Cell Res, vol.29, pp.251-253, 2019.

M. S. Aschtgen, M. S. Thomas, and E. Cascales, Anchoring the type VI secretion 487 system to the peptidoglycan: TssL, TagL, TagP... what else? Virulence, vol.1, pp.535-540, 2010.

Y. G. Santin, C. E. Camy, A. Zoued, T. Doan, M. S. Aschtgen et al., Role 489 and recruitment of the TagL peptidoglycan-binding protein during Type VI secretion 490 system biogenesis, J Bacteriol, 2019.

B. S. Weber, S. W. Hennon, M. S. Wright, N. E. Scott, V. De-berardinis et al., Genetic dissection of the type VI secretion 493 system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, 494 required for its biogenesis, MBio, vol.7, pp.1253-1269, 2016.

Y. G. Santin and E. Cascales, Domestication of a housekeeping transglycosylase for 496 assembly of a Type VI secretion system, EMBO Rep, vol.18, pp.138-149, 2017.

A. B. Russell, A. G. Wexler, B. N. Harding, J. C. Whitney, A. J. Bohn et al., , p.498

N. A. Barry, H. Zheng, S. B. Peterson, S. Chou, T. Gonen et al., , p.499

J. D. Mougous, A type VI secretion-related pathway in Bacteroidetes mediates 500 interbacterial antagonism, Cell Host Microbe, vol.16, pp.227-236, 2014.

M. J. Coyne, K. G. Roelofs, and L. E. Comstock, Type VI secretion systems of human 503 gut Bacteroidales segregate into three genetic architectures, two of which are 504 contained on mobile genetic elements, BMC Genomics, vol.17, p.58, 2016.

S. Nazarov, J. P. Schneider, M. Brackmann, K. N. Goldie, H. Stahlberg et al., Cryo-EM reconstruction of Type VI secretion system baseplate and sheath 508 distal end, EMBO J, vol.507, p.97103, 2018.

Y. Cherrak, C. Rapisarda, R. Pellarin, G. Bouvier, B. Bardiaux et al., Biogenesis 511 and structure of a type VI secretion baseplate, Nat Microbiol, vol.3, pp.1404-1416, 2014.

, Biochemical analysis of TssK, a core component of the bacterial type VI secretion 514 system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG 515 subcomplex, Biochem J, vol.461, pp.291-304

N. M. Taylor, N. S. Prokhorov, R. C. Guerrero-ferreira, and M. M. Shneider,

K. N. Goldie, H. Stahlberg, and P. G. Leiman, Structure of the T4 baseplate and its 518, 2016.

N. S. Lossi, R. Dajani, P. Freemont, and A. Filloux, Structure-function analysis of 569, 2011.

, HsiF, a gp25-like component of the type VI secretion system, Pseudomonas 570 aeruginosa. Microbiology, vol.157, pp.3292-305

J. E. Bröms, T. Ishikawa, S. N. Wai, and A. Sjöstedt, A functional VipA-VipB 572 interaction is required for the type VI secretion system activity of Vibrio cholerae O1 573 strain A1552, BMC Microbiol, vol.13, p.96, 2013.

X. Y. Zhang, Y. R. Brunet, L. Logger, B. Douzi, C. Cambillau et al., Dissection of the TssB-TssC interface during type VI secretion sheath complex 576 formation, PLoS One, vol.575, p.81074, 2013.

S. Kube, N. Kapitein, T. Zimniak, F. Herzog, A. Mogk et al., Structure of 578 the VipA/B type VI secretion complex suggests a contraction-state-specific recycling 579 mechanism, Cell Rep, vol.8, pp.20-30, 2014.

M. Kudryashev, R. Y. Wang, M. Brackmann, S. Scherer, T. Maier et al., Structure of the type VI secretion 582 system contractile sheath, Cell, vol.160, pp.952-962, 2015.

J. Wang, M. Brackmann, D. Castaño-díez, M. Kudryashev, K. N. Goldie et al., , p.584

H. Stahlberg and M. Basler, Cryo-EM structure of the extended type VI secretion 585 system sheath-tube complex, Nat Microbiol, vol.2, pp.1507-1512, 2017.

M. Brackmann, J. Wang, and M. Basler, Type VI secretion system sheath inter-587 subunit interactions modulate its contraction, EMBO Rep, vol.19, pp.225-233, 2018.

N. Kapitein, G. Bönemann, A. Pietrosiuk, F. Seyffer, I. Hausser et al., ClpV recycles VipA/VipB tubules and prevents non-productive tubule 591 formation to ensure efficient type VI protein secretion, Mol Microbiol, vol.87, pp.1013-1041, 2013.

A. Zoued, E. Durand, Y. R. Brunet, S. Spinelli, B. Douzi et al., , p.594

P. Legrand, L. Journet, R. Fronzes, T. Mignot, C. Cambillau et al., , 2016.

, Priming and polymerization of a bacterial contractile tail structure, Nature, vol.531, pp.59-63

A. Vettiger, J. Winter, L. Lin, and M. Basler, The type VI secretion system sheath 597 assembles at the end distal from the membrane anchor, Nat Commun, vol.8, p.16088, 2017.

A. Zoued, E. Durand, Y. G. Santin, L. Journet, A. Roussel et al., In vivo 601 TssA proximity labelling during type VI secretion biogenesis reveals TagA as a 602 protein that stops and holds the sheath, Nat Microbiol, vol.39, pp.1304-1313, 2017.

S. R. Dix, H. J. Owen, R. Sun, A. Ahmad, S. Shastri et al., Sinning 608 I, Mogk A. 2011. Molecular basis for the unique role of the AAA+ chaperone ClpV in 609 type VI protein secretion, J Biol Chem, vol.9, pp.30010-30031, 2018.

B. Douzi, Y. R. Brunet, S. Spinelli, V. Lensi, P. Legrand et al., , p.612

L. Journet, E. Cascales, and C. Cambillau, Structure and specificity of the Type VI 613 secretion system ClpV-TssC interaction in enteroaggregative Escherichia coli, Sci, vol.614, p.34405, 2016.

D. Unterweger, B. Kostiuk, and S. Pukatzki, Adaptor proteins of type VI secretion 616 system effectors, Trends Microbiol, vol.25, pp.8-10, 2017.

J. Ma, Z. Pan, J. Huang, M. Sun, C. Lu et al., The Hcp proteins fused with 618 diverse extended-toxin domains represent a novel pattern of antibacterial effectors in 619 type VI secretion systems, Virulence, vol.8, pp.1189-1202, 2017.

T. M. Brooks, D. Unterweger, V. Bachmann, B. Kostiuk, and S. Pukatzki, The Type VI secretion system spike 625 protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei 626 group Burkholderia species, Infect Immun, vol.288, pp.1436-1480, 2013.

J. M. Silverman, D. M. Agnello, H. Zheng, B. T. Andrews, M. Li et al., Haemolysin coregulated protein is an exported receptor and 629 chaperone of type VI secretion substrates, Mol Cell, vol.51, p.632, 2013.

D. A. Cunningham, B. Q. Tran, D. A. Low, D. R. Goodlett, C. S. Hayes et al., Genetically distinct pathways guide effector export through the type VI 634 secretion system, Mol Microbiol, vol.633, p.636, 2014.

D. Provenzano and S. Pukatzki, The Vibrio cholerae type VI secretion system 637 employs diverse effector modules for intraspecific competition, Nat Commun, vol.5, p.3549, 2014.

X. Liang, R. Moore, M. Wilton, M. J. Wong, L. Lam et al., Identification 640 of divergent type VI secretion effectors using a conserved chaperone domain, Proc, vol.641, 2015.

, Natl Acad Sci, vol.112, pp.9106-9117

D. Unterweger, B. Kostiuk, R. Ötjengerdes, A. Wilton, and L. Diaz-satizabal, Chimeric adaptor proteins translocate diverse type VI secretion system 644 effectors in Vibrio cholerae, EMBO J, vol.34, pp.2198-210, 2015.

A. Diniz, J. Coulthurst, S. J. Flaugnatti, N. Le, T. T. Canaan et al., Intraspecies competition in Serratia 646 marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-647 associated accessory protein, J Bacteriol, vol.197, p.649, 2015.

C. Kellenberger, A. Roussel, C. Cambillau, E. Cascales, L. Journet et al., A 650 phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-651 terminal domain of the VgrG spike protein for delivery, Proc Natl Acad Sci, vol.99, pp.3931-3971, 2016.

F. R. Cianfanelli, A. Diniz, J. Guo, M. De-cesare, V. Trost et al., VgrG and PAAR proteins define distinct versions of a functional type VI 658 secretion system, PLoS Pathog, vol.12, p.1005735, 2016.

J. Ma, M. Sun, W. Dong, Z. Pan, C. Lu et al., PAAR-Rhs proteins harbor 660 various C-terminal toxins to diversify the antibacterial pathways of type VI secretion 661 systems, Environ Microbiol, vol.19, pp.345-360, 2017.

D. Quentin, S. Ahmad, P. Shanthamoorthy, J. D. Mougous, and J. C. Whitney, Mechanism of loading and translocation of type VI secretion system effector 664, 2018.

N. Tse6 and . Microbiol, , vol.3, pp.1142-1152

B. J. Burkinshaw, X. Liang, M. Wong, A. Le, L. Lam et al., A type VI 666 secretion system effector delivery mechanism dependent on PAAR and a chaperone-667 co-chaperone complex, Nat Microbiol, vol.3, pp.632-640, 2018.

A. Hachani, L. P. Allsopp, Y. Oduko, and A. Filloux, The VgrG proteins are "à la 669 carte" delivery systems for bacterial type VI effectors, J Biol Chem, vol.289, pp.17872-84, 2014.

. Legend and . Figures,

, FIGURE 1 Schematic representation of the Type VI secretion system. The different subunits 674 are labeled, as well as the different subcomplexes. IM, inner membrane

, The recruitment and docking of the baseplate on the membrane 680 complex (2) initiates the TssA-mediated polymerization of the tail tube/sheath tubular 681 structure (3, 4, 5), which is stopped when hitting the opposite membrane by the TagA stopper 682 (5), FIGURE 2 Assembly and mechanism of firing of the Type VI secretion system. T6SS 678 biogenesis starts with the positioning and assembly of the membrane complex, and the 679 assembly of the baseplate (1)

, Effectors are 687 depicted as red circles. Specialized effectors are chimeric needle proteins with extensions 688 encoding the effector. Cargo effectors are independent proteins that associate to needle 689 components