, Mol. Microbiol, vol.99, pp.1099-1118, 2016.

E. Gueguen and E. Cascales, Promoter Swapping Unveils the Role of the Citrobacter 1004 rodentium CTS1 Type VI Secretion System in Interbacterial Competition

, Environ. Microbiol, vol.79, pp.32-38, 2013.

Y. R. Brunet, L. Espinosa, S. Harchouni, T. Mignot, and E. Cascales, Imaging Type VI 1007 Secretion-Mediated Bacterial Killing, Cell Rep, vol.3, pp.36-41, 2013.

S. Q. Zheng, MotionCor2: anisotropic correction of beam-induced motion for 1009 improved cryo-electron microscopy, Nat. Methods, vol.14, pp.331-332, 2017.

K. Zhang and . Gctf, Real-time CTF determination and correction, J. Struct. Biol, vol.193, pp.1-12, 2016.

S. H. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM 1013 structure determination, J. Struct. Biol, vol.180, pp.519-530, 2012.

A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, and . Cryosparc, Algorithms 1015 for rapid unsupervised cryo-EM structure determination, Nat. Methods, vol.14, pp.290-296, 2017.

D. Asarnow, , 2016.

R. M. Sanchez, Recentering and subboxing of particles (REP), 2017.

T. C. Terwilliger, O. Sobolev, P. Afonine, and P. D. Adams, Automated map 1020 sharpening by maximization of detail and connectivity, bioRxiv, 2018.

E. F. Pettersen, UCSF Chimera-A Visualization System for Exploratory 1022 Research and Analysis, J Comput Chem, vol.25, pp.1605-1612, 2004.

F. Simkovic, S. Ovchinnikov, D. Baker, and D. J. Rigden, Applications of contact 1024 predictions to structural biology, IUCrJ, vol.4, pp.291-300, 2017.

T. A. Hopf, Sequence co-evolution gives 3D contacts and structures of protein 1026 complexes, Elife, vol.3, 2014.

S. Wang, S. Sun, Z. Li, R. Zhang, and J. Xu, Accurate De Novo Prediction of Protein 1028 Contact Map by Ultra-Deep Learning Model, PLOS Comput. Biol, vol.13, pp.1005324-1029, 2017.

D. S. Marks, Protein 3D structure computed from evolutionary sequence 1031 variation, PLoS One, vol.6, 2011.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of 1033 Coot, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

A. Leaver-fay, Rosetta3: An object-oriented software suite for the simulation and 1035 design of macromolecules, Methods Enzymol, vol.487, pp.545-574, 2011.

P. Afonine, Real-space refinement in Phenix for cryo-EM and crystallography, 1037 bioRxiv, 2018.

L. J. Mcguffin, K. Bryson, and D. T. Jones, The PSIPRED protein structure prediction 1039 server, Bioinformatics, vol.16, pp.404-405, 2000.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 1041 web portal for protein modeling, prediction and analysis, Nat. Protoc, vol.10, pp.845-858, 2015.

S. Wang, S. Sun, Z. Li, R. Zhang, and J. Xu, Accurate De Novo Prediction of Protein 1044 Contact Map by Ultra-Deep Learning Model, PLOS Comput. Biol, vol.13, pp.1005324-1045, 2017.

O. B. Clarke, Coot Trimmings, 2017.

G. Bouvier, B. Bardiaux, and M. Nilges, Automatic Building of Protein Atomic Models 1048 from Cryo-EM Maps, Biophys. J, vol.114, pp.190-191, 2018.

S. Ovchinnikov, Protein structure determination using metagenome sequence 1050 data. Science (80-. ), vol.355, pp.294-298, 2017.

W. Rieping, B. Bardiaux, A. Bernard, T. E. Malliavin, and M. Nilges, ARIA2: 1052 Automated NOE assignment and data integration in NMR structure calculation, Bioinformatics, vol.23, pp.381-382, 1053.

S. Wang, J. Peng, J. Ma, and J. Xu, Protein Secondary Structure Prediction Using Deep 1055, Convolutional Neural Fields. Sci. Rep, vol.6, 2016.

A. T. Brunger, Version 1.2 of the Crystallography and NMR system, Nat. Protoc, vol.2, pp.2728-2733, 1057.

F. Mareuil, T. E. Malliavin, M. Nilges, and B. Bardiaux, Improved reliability, accuracy 1059 and quality in automated NMR structure calculation with ARIA, J. Biomol. NMR, vol.62, pp.425-438, 2015.

J. Kuszewski, A. M. Gronenborn, and G. M. Clore, Improving the quality of NMR and 1062 crystallographic protein structures by means of a conformational database potential 1063 derived from structure databases, Protein Sci, vol.5, pp.1067-1080, 2008.

R. Y. Wang, Automated structure refinement of macromolecular assemblies 1065 from cryo-EM maps using Rosetta, Elife, vol.5, 2016.

B. A. Barad, EMRinger: side chain-directed model and map validation for 3D 1067 cryo-electron microscopy, Nat. Methods, vol.12, pp.943-946, 2015.

V. B. Chen, MolProbity : all-atom structure validation for macromolecular 1069 crystallography, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.66, pp.12-21, 2010.

A. Brown, Tools for macromolecular model building and refinement into electron 1071 cryo-microscopy reconstructions, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.71, p.153, 2015.

P. D. Adams, PHENIX: A comprehensive Python-based system for 1074 macromolecular structure solution, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

E. Krissinel and K. Henrick, Inference of Macromolecular Assemblies from Crystalline 1077

, State. J. Mol. Biol, vol.372, pp.774-797, 2007.

C. Williams, Using C-alpha geometry to describe protein secondary structure and 1079 motif, Dr. Diss, 2016.

A. C. Leney and A. J. Heck, Native Mass Spectrometry: What is in the Name?, J. Am. Soc. Mass Spectrom, vol.28, pp.5-13, 2017.

N. M. Taylor, Structure of the T4 baseplate and its function in triggering sheath contraction, Nature, vol.533, pp.346-352, 2016.

G. English, O. Byron, F. R. Cianfanelli, A. R. Prescott, and S. J. Coulthurst, Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex, Biochem. J, vol.461, pp.291-304, 2014.

S. Nazarov, Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end, EMBO J, vol.37, p.97103, 2018.

V. S. Nguyen, Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex, Nat. Microbiol, vol.2, p.17103, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01780712

E. Durand, Biogenesis and structure of a type VI secretion membrane core complex, Nature, vol.523, pp.555-560, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01778556

C. F. Song, Flexibility within the rotor and stators of the vacuolar H +-ATPase, PLoS One, vol.8, 2013.

C. R. Büttner, Y. Wu, K. L. Maxwell, and A. R. Davidson, Baseplate assembly of phage Mu: Defining the conserved core components of contractile-tailed phages and related bacterial systems, Proc. Natl. Acad. Sci, vol.113, pp.10174-10179, 2016.

Y. R. Brunet, A. Zoued, F. Boyer, B. Douzi, and E. Cascales, The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization, PLOS Genet, vol.11, p.1005545, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01778563

V. A. Kostyuchenko, Three-dimensional structure of bacteriophage T4 baseplate, Nat. Struct. Biol, vol.10, pp.688-693, 2003.

M. L. Yap, Structure of the 3.3MDa, in vitro assembled, hubless bacteriophage T4 baseplate, J. Struct. Biol, vol.187, pp.95-102, 2014.

F. Arisaka, M. L. Yap, S. Kanamaru, and M. G. Rossmann, Molecular assembly and structure of the bacteriophage T4 tail, Biophys. Rev, vol.8, pp.385-396, 2016.

A. A. Aksyuk, P. G. Leiman, M. M. Shneider, V. V. Mesyanzhinov, and M. G. Rossmann, The Structure of Gene Product 6 of Bacteriophage T4, the Hinge-Pin of the Baseplate, Structure, vol.17, pp.800-808, 2009.

A. A. Aksyuk, The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria, EMBO J, vol.28, pp.821-829, 2009.

V. A. Kostyuchenko, The tail structure of bacteriophage T4 and its mechanism of contraction, Nat. Struct. Mol. Biol, vol.12, pp.810-813, 2005.

M. L. Yap and M. G. Rossmann, Structure and function of bacteriophage T4, Future Microbiol, vol.9, pp.1319-1327, 2014.

P. G. Leiman and M. M. Shneider, Contractile tail machines of bacteriophages, Adv. Exp. Med. Biol, vol.726, pp.93-114, 2012.

M. L. Yap, Sequential assembly of the wedge of the baseplate of phage T4 in the presence and absence of gp11 as monitored by analytical ultracentrifugation, Macromol. Biosci, vol.10, pp.808-813, 2010.

M. L. Yap, K. Mio, P. G. Leiman, S. Kanamaru, and F. Arisaka, The Baseplate Wedges of Bacteriophage T4 Spontaneously Assemble into Hubless Baseplate-Like Structure In Vitro, J. Mol. Biol, vol.395, pp.349-360, 2010.

P. G. Leiman, Morphogenesis of the T4 tail and tail fibers, Virology Journal, vol.7, 2010.

N. Flaugnatti, A phospholipase A 1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery, Mol. Microbiol, vol.99, pp.1099-1118, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439083

A. Diniz, J. Liu, Y. Coulthurst, and S. J. , Molecular weaponry: diverse effectors delivered by the Type VI secretion system, Cell. Microbiol, vol.17, pp.1742-1751, 2015.

D. D. Bondage, J. Lin, L. Ma, C. Kuo, and E. Lai, VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex, Proc. Natl. Acad. Sci, vol.113, pp.3931-3940, 2016.

S. Wang, S. Sun, Z. Li, R. Zhang, and J. Xu, Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model, PLOS Comput. Biol, vol.13, p.1005324, 2017.

Y. R. Brunet, J. Henin, H. Celia, and E. Cascales, Type VI secretion and bacteriophage tail tubes share a common assembly pathway, EMBO Rep, vol.15, pp.315-321, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458198

A. Zoued, TssK is a trimeric cytoplasmic protein interacting with components of both phagelike and membrane anchoring complexes of the type VI secretion system, J. Biol. Chem, vol.288, pp.27031-27041, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02091435

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci, vol.97, pp.6640-6645, 2000.

M. K. Chaveroche, J. M. Ghigo, and C. Enfert, A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans, Nucleic Acids Res, vol.28, p.97, 2000.

L. M. Guzman, D. Belin, M. J. Carson, and J. Beckwith, Tight regulation, modulation, and highlevel expression by vectors containing the arabinose PBAD promoter, J. Bacteriol, vol.177, pp.4121-4130, 1995.

W. Rieping, B. Bardiaux, A. Bernard, T. E. Malliavin, and M. Nilges, ARIA2: Automated NOE assignment and data integration in NMR structure calculation, Bioinformatics, vol.23, pp.381-382, 2007.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

O. B. Clarke, Coot Trimmings, 2017.

A. Punjani, J. L. Rubinstein, D. J. Fleet, and M. A. Brubaker, cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination, Nat. Methods, vol.14, pp.290-296, 2017.

D. Asarnow, , 2016.

S. Wang, J. Peng, J. Ma, and J. Xu, Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields, Sci. Rep, vol.6, 2016.

B. A. Barad, EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy, Nat. Methods, vol.12, pp.943-946, 2015.

T. A. Hopf, Sequence co-evolution gives 3D contacts and structures of protein complexes, Elife, vol.3, 2014.

K. Zhang, Gctf: Real-time CTF determination and correction, J. Struct. Biol, vol.193, pp.1-12, 2016.

S. Ovchinnikov, H. Kamisetty, and D. Baker, Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information, 2014.

W. Rasband, . U. Imagej, and . Natl, Institutes Heal, 2012.

S. Ovchinnikov, Protein structure determination using metagenome sequence data. Science (80-. ), vol.355, pp.294-298, 2017.

A. Ducret, E. M. Quardokus, and Y. V. Brun, MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis, Nat. Microbiol, vol.1, 2016.

V. B. Chen, MolProbity : all-atom structure validation for macromolecular crystallography, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.66, pp.12-21, 2010.

S. Q. Zheng, MotionCor2: anisotropic correction of beam-induced motion for improved cryoelectron microscopy, Nat. Methods, vol.14, pp.331-332, 2017.

P. D. Adams, PHENIX: A comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

P. Afonine, Real-space refinement in Phenix for cryo-EM and crystallography, bioRxiv, 2018.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc, vol.10, pp.845-858, 2015.

E. Krissinel and K. Henrick, Inference of Macromolecular Assemblies from Crystalline State, J. Mol. Biol, vol.372, pp.774-797, 2007.

S. H. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM structure determination, J. Struct. Biol, vol.180, pp.519-530, 2012.

R. M. Sanchez, Recentering and subboxing of particles (REP), 2017.

A. Leaver-fay, Rosetta3: An object-oriented software suite for the simulation and design of macromolecules, Methods Enzymol, vol.487, pp.545-574, 2011.

E. F. Pettersen, UCSF Chimera-A Visualization System for Exploratory Research and Analysis, J Comput Chem, vol.25, pp.1605-1612, 2004.