M. E. Bigal, R. B. Lipton, and W. F. Stewart, The epidemiology and impact of migraine, Curr. Neurol. Neurosci. Rep, vol.4, pp.98-104, 2004.

, Headache Classification Committee of the International Headache Society (IHS), Cephalalgia, vol.33, pp.629-808, 2013.

R. Noseda and R. Burstein, Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain, Pain, vol.154

I. Ayzenberg, Central sensitization of the trigeminal and somatic nociceptive systems in medication overuse headache mainly involves cerebral supraspinal structures, Cephalalgia, vol.26, pp.1106-1114, 2006.

M. De-tommaso, Abnormal brain processing of cutaneous pain in patients with chronic migraine, Pain, vol.101, pp.25-32, 2003.

A. Perrotta, Sensitisation of spinal cord pain processing in medication overuse headache involves supraspinal pain control, Cephalalgia, vol.30, pp.272-284, 2010.

E. S. Kristoffersen and C. Lundqvist, Medication-overuse headache: a review, J. Pain. Res, vol.7, pp.367-378, 2014.

M. De-felice, Triptan-induced enhancement of neuronal nitric oxide synthase in trigeminal ganglion dural afferents underlies increased responsiveness to potential migraine triggers, Brain, vol.133, pp.2475-2488, 2010.

M. De-felice, Triptan-induced latent sensitization: a possible basis for medication overuse headache, Ann. Neurol, vol.67, pp.325-337, 2010.

F. Padilla, Expression and localization of the Nav1.9 sodium channel in enteric neurons and in trigeminal sensory endings: implication for intestinal reflex function and orofacial pain, Mol. Cell. Neurosci, vol.35, pp.138-152, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170428

R. S. Scroggs, The distribution of low-threshold TTX-resistant Na+ currents in rat trigeminal ganglion cells, Neuroscience, vol.222, pp.205-214, 2012.

A. P. Luiz, O. Kopach, S. Santana-varela, and J. N. Wood, The role of Nav1.9 channel in the development of neuropathic orofacial pain associated with trigeminal neuralgia, Mol. Pain, vol.11, p.72, 2015.

S. Dib-hajj, J. A. Black, T. R. Cummins, and S. G. Waxman, NaN/Nav1.9: a sodium channel with unique properties, Trends Neurosci, vol.25, pp.253-259, 2002.

B. Coste, N. Osorio, F. Padilla, M. Crest, and P. Delmas, Gating and modulation of presumptive Nav1.9 channels in enteric and spinal sensory neurons, Mol. Cell. Neurosci, vol.26, pp.123-134, 2004.

F. Maingret, Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism, J. Gen. Physiol, vol.131, pp.211-225, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00274301

M. D. Baker, S. Y. Chandra, Y. Ding, S. G. Waxman, and J. N. Wood, GTPinduced tetrodotoxin-resistant Na + current regulates excitability in mouse and rat small diameter sensory neurons, J. Physiol, vol.548, pp.373-382, 2003.

S. D. Dib-hajj, J. A. Black, S. G. Waxman, and . Nav1, 9: a sodium channel linked to human pain, Nat. Rev. Neurosci, vol.16, pp.511-519, 2015.

A. M. Ritter, W. J. Martin, and K. S. Thorneloe, The voltage-gated sodium channel Nav1.9 is required for inflammation-based urinary bladder dysfunction, Neurosci. Lett, vol.452, pp.28-32, 2009.

M. Amsalem, C. Poilbout, G. Ferracci, P. Delmas, and F. Padilla, Membrane cholesterol depletion as a trigger of Nav1.9 channel-mediated inflammatory pain, EMBO J, vol.37, p.97349, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01772190

S. Lolignier, Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation, PLoS ONE, vol.6, p.23083, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01795185

F. Amaya, The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity, J. Neurosci, vol.26, pp.12852-12860, 2006.

B. T. Priest, Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior, Proc. Natl Acad. Sci. USA, vol.102, pp.9382-9387, 2005.

S. Lolignier, The Nav1.9 channel is a key determinant of cold pain sensation and cold allodynia, Cell Rep, vol.11, pp.1067-1078, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208540

J. Huang, Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy, Brain, vol.137, pp.1627-1642, 2014.

X. Y. Zhang, Gain-of-function mutations in SCN11A cause familial episodic pain, Am. J. Hum. Genet, vol.93, pp.957-966, 2013.

E. Leipold, A de novo gain-of-function mutation in SCN11A causes loss of pain perception, Nat. Genet, vol.45, pp.1399-1404, 2013.

C. Han, Familial gain-of-function Na(v)1.9 mutation in a painful channelopathy, J. Neurol. Neurosurg. Psychiatry, vol.88, pp.233-240, 2017.

L. Edvinsson and R. Uddman, Neurobiology in primary headaches, Brain Res. Rev, vol.48, pp.438-456, 2005.

A. Markovics, Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice, Neurobiol. Dis, vol.45, pp.633-644, 2012.

M. A. Geyer, K. L. Mcilwain, and R. Paylor, Mouse genetic models for prepulse inhibition: an early review, Mol. Psychiatry, vol.7, pp.1039-1053, 2002.

S. Belanger, W. Ma, J. G. Chabot, and R. Quirion, Expression of calcitonin gene-related peptide, substance P and protein kinase C in cultured dorsal root ganglion neurons following chronic exposure to mu, delta and kappa opiates, Neuroscience, vol.115, pp.441-453, 2002.

S. B. Munksgaard, L. Bendtsen, and R. H. Jensen, Modulation of central sensitisation by detoxification in MOH: results of a 12-month detoxification study, Cephalalgia, vol.33, pp.444-453, 2013.

P. Calabresi and L. M. Cupini, Medication-overuse headache: similarities with drug addiction, Trends Pharm. Sci, vol.26, pp.62-68, 2005.

L. M. Cupini, P. Sarchielli, and P. Calabresi, Medication overuse headache: neurobiological, behavioural and therapeutic aspects, Pain, vol.150, pp.222-224, 2010.

I. Jansen-olesen, P. Tfelt-hansen, and J. Olesen, Animal migraine models for drug development: status and future perspectives, CNS Drugs, vol.27, pp.1049-1068, 2013.

J. Olesen, The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache, Pharm. Ther, vol.120, pp.157-171, 2008.

P. J. Goadsby, L. Edvinsson, and R. Ekman, Vasoactive peptide release in the extracerebral circulation of humans during migraine headache, Ann. Neurol, vol.28, pp.183-187, 1990.

P. Sarchielli, A. Alberti, M. Codini, A. Floridi, and V. Gallai, Nitric oxide metabolites, prostaglandins and trigeminal vasoactive peptides in internal jugular vein blood during spontaneous migraine attacks, Cephalalgia, vol.20, pp.907-918, 2000.

G. Juhasz, NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release, Pain, vol.106, pp.461-470, 2003.

A. L. Green, Increased susceptibility to cortical spreading depression in an animal model of medication-overuse headache, Cephalalgia, vol.34, pp.594-604, 2013.

Q. P. Ma, R. Hill, and D. Sirinathsinghji, Colocalization of CGRP with 5-HT1B/ 1D receptors and substance P in trigeminal ganglion neurons in rats, Eur. J. Neurosci, vol.13, pp.2099-2104, 2001.

F. M. Amin, Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study, Lancet Neurol, vol.12, pp.454-461, 2013.

C. J. Woolf, Central sensitization: implications for the diagnosis and treatment of pain, Pain, vol.152, pp.2-15, 2011.

P. Forsythe and J. Bienenstock, The mast cell-nerve functional unit: a key component of physiologic and pathophysiologic responses, Chem. Immunol. Allergy, vol.98, pp.196-221, 2012.

A. A. Krabbe and J. Olesen, Headache provocation by continuous intravenous infusion of histamine. Clinical results and receptor mechanisms, Pain, vol.8, pp.253-259, 1980.

M. Antonova, T. Wienecke, J. Olesen, and M. Ashina, Prostaglandin E(2) induces immediate migraine-like attack in migraine patients without aura, Cephalalgia, vol.32, pp.822-833, 2012.

N. M. Kushnir-sukhov, 5-Hydroxytryptamine induces mast cell adhesion and migration, J. Immunol, vol.177, pp.6422-6432, 2006.