H. Strahl and L. W. Hamoen, Membrane potential is important for bacterial cell division, Proc Natl Acad Sci U S A, vol.107, pp.12281-12286, 2010.

F. Alcock, M. A. Baker, N. P. Greene, T. Palmer, M. I. Wallace et al., Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system, Proc Natl Acad Sci U S A, vol.110, pp.3650-3659, 2013.

P. Rose, J. Frobel, P. L. Graumann, and M. Muller, Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells, PLoS One, vol.8, 2013.

D. W. Adams, L. J. Wu, and J. Errington, Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane, EMBO J, vol.34, pp.491-501, 2015.

A. S. Johnson, S. Van-horck, and P. J. Lewis, Dynamic localization of membrane proteins in Bacillus subtilis, Microbiology, vol.150, pp.2815-2824, 2004.

L. N. Liu, S. J. Bryan, F. Huang, J. Yu, P. J. Nixon et al., Control of electron transport routes through redox-regulated redistribution of respiratory complexes, Proc Natl Acad Sci U S A, vol.109, pp.11431-11436, 2012.

H. Erhardt, F. Dempwolff, M. Pfreundschuh, M. Riehle, C. Schafer et al., Organization of the Escherichia coli aerobic enzyme complexes of oxidative phosphorylation in dynamic domains within the cytoplasmic membrane, vol.3, pp.316-326, 2014.

I. Llorente-garcia, T. Lenn, H. Erhardt, O. L. Harriman, L. N. Liu et al., Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation, Biochim Biophys Acta, vol.1837, pp.811-824, 2014.

F. Alberge, L. Espinosa, F. Seduk, L. Sylvi, R. Toci et al., Dynamic subcellular localization of a respiratory complex controls bacterial respiration, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01203080

P. R. Rich, A generalised model for the equilibration of quinone pools with their biological donors and acceptors in membrane-bound electron transfer chains, FEBS Lett, vol.130, issue.81, pp.81113-81114, 1981.

A. Magalon and F. Alberge, Distribution and dynamics of OXPHOS complexes in the bacterial cytoplasmic membrane, Biochim Biophys Acta, vol.1857, pp.198-213, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440756

D. Ralt, J. S. Wishnok, R. Fitts, and S. R. Tannenbaum, Bacterial catalysis of nitrosation: involvement of the nar operon of Escherichia coli, J Bacteriol, vol.170, pp.359-364, 1988.

N. J. Gilberthorpe and R. K. Poole, Nitric oxide homeostasis in Salmonella typhimurium: roles of respiratory nitrate reductase and flavohemoglobin, J Biol Chem, vol.283, pp.11146-11154, 2008.

C. E. Vine, S. K. Purewal, and J. A. Cole, NsrR-dependent method for detecting nitric oxide accumulation in the Escherichia coli cytoplasm and enzymes involved in NO production, FEMS Microbiol Lett, vol.325, pp.108-114, 2011.

G. Rowley, D. Hensen, H. Felgate, A. Arkenberg, C. Appia-ayme et al., Resolving the contributions of the membrane-bound and periplasmic nitrate reductase systems to nitric oxide and nitrous oxide production in Salmonella enterica serovar Typhimurium, Biochem J, vol.441, pp.755-762, 2012.

J. A. Cole, Anaerobic bacterial response to nitrosative stress, Adv Microb Physiol, vol.72, pp.193-237, 2018.

D. T. Hess, A. Matsumoto, S. O. Kim, H. E. Marshall, and J. S. Stamler, Protein S-nitrosylation: purview and parameters, Nat Rev Mol Cell Biol, vol.6, pp.150-166, 2005.

D. Seth, D. T. Hess, A. Hausladen, L. Wang, Y. J. Wang et al., A multiplex enzymatic machinery for cellular protein S-nitrosylation, Mol Cell, vol.69, pp.451-464, 2018.

D. Seth, A. Hausladen, Y. J. Wang, and J. S. Stamler, Endogenous protein S-nitrosylation in E. coli: regulation by OxyR, Science, vol.336, pp.470-473, 2012.

B. L. Berg and V. Stewart, Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12, Genetics, vol.125, pp.691-702, 1990.

P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature, vol.191, pp.144-148, 1961.

R. W. Jones, Proton translocation by the membrane-bound formate dehydrogenase of Escherichia coli, FEMS Microbiol Lett, vol.8, pp.90023-90026, 1980.

M. Jormakka, S. Tornroth, B. Byrne, and S. Iwata, Molecular basis of proton motive force generation: structure of formate dehydrogenase-N, Science, vol.295, pp.1863-1868, 2002.

H. Zheng, G. Wisedchaisri, T. Gonen, W. A. Berg, W. R. Hagen et al., The hybrid-cluster protein ('prismane protein') from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the, Nature, vol.497, pp.647-651, 2000.

, Eur J Biochem, vol.267, pp.666-676

J. Wang, C. E. Vine, B. K. Balasiny, J. Rizk, C. L. Bradley et al., The roles of the hybrid cluster protein, Hcp and its reductase, Hcr, in high affinity nitric oxide reduction that protects anaerobic cultures of Escherichia coli against nitrosative stress, Mol Microbiol, vol.100, pp.877-892, 2016.

R. H. Jackson, A. Cornish-bowden, and J. A. Cole, Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K12, Biochem J, vol.193, pp.861-867, 1981.

J. A. Cole and D. J. Richardson, Respiration of nitrate and nitrite, EcoSal Plus, vol.3, 2008.

A. M. Gardner and P. R. Gardner, Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli, J Biol Chem, vol.277, pp.8166-8171, 2002.

A. M. Gardner, R. A. Helmick, and P. R. Gardner, Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli, J Biol Chem, vol.277, pp.8172-8177, 2002.

C. M. Gomes, A. Giuffre, E. Forte, J. B. Vicente, L. M. Saraiva et al., A novel type of nitric-oxide reductase. Escherichia coli flavorubredoxin, J Biol Chem, vol.277, pp.25273-25276, 2002.

M. C. Justino, C. C. Almeida, M. Teixeira, and L. M. Saraiva, Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged ironsulfur clusters, J Biol Chem, vol.282, pp.10352-10359, 2007.

B. Balasiny, M. D. Rolfe, C. Vine, C. Bradley, J. Green et al., Release of nitric oxide by the Escherichia coli YtfE (RIC) protein and its reduction by the hybrid cluster protein in an integrated pathway to minimize cytoplasmic nitrosative stress, Microbiology, vol.164, pp.563-575, 2018.

L. R. Jarboe, D. R. Hyduke, L. M. Tran, K. J. Chou, and J. C. Liao, Determination of the Escherichia coli S-nitrosoglutathione response network using integrated biochemical and systems analysis, J Biol Chem, vol.283, pp.5148-5157, 2008.

J. E. Karlinsey, I. S. Bang, L. A. Becker, E. R. Frawley, S. Porwollik et al., The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium, 2012.

, Mol Microbiol, vol.85, pp.1179-1193

D. R. Hyduke, L. R. Jarboe, L. M. Tran, K. J. Chou, and J. C. Liao, Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli, Proc Natl Acad Sci U S A, vol.104, pp.8484-8489, 2007.

B. Ren, N. Zhang, J. Yang, and H. Ding, Nitric oxide-induced bacteriostasis and modification of iron-sulphur proteins in Escherichia coli, Mol Microbiol, vol.70, pp.953-964, 2008.

A. Kusumi, K. G. Suzuki, R. S. Kasai, K. Ritchie, and T. K. Fujiwara, Hierarchical mesoscale domain organization of the plasma membrane, Trends Biochem Sci, vol.36, pp.604-615, 2011.

S. F. Banani, H. O. Lee, A. A. Hyman, and M. K. Rosen, Biomolecular condensates: organizers of cellular biochemistry, Nat Rev Mol Cell Biol, vol.18, pp.285-298, 2017.

D. L. Schmitt and S. An, Spatial organization of metabolic enzyme complexes in cells, Biochemistry, vol.56, pp.3184-3196, 2017.

L. J. Sweetlove and A. R. Fernie, The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation, Nat Commun, vol.9, p.2136, 2018.

A. Typas and V. Sourjik, Bacterial protein networks: properties and functions, Nat Rev Microbiol, vol.13, pp.559-572, 2015.

J. E. Dueber, G. C. Wu, G. R. Malmirchegini, T. S. Moon, C. J. Petzold et al., Synthetic protein scaffolds provide modular control over metabolic flux, Nat Biotechnol, vol.27, pp.753-759, 2009.

M. Castellana, M. Z. Wilson, Y. Xu, P. Joshi, I. M. Cristea et al., Enzyme clustering accelerates processing of intermediates through metabolic channeling, Nat Biotechnol, vol.32, pp.1011-1018, 2014.

A. M. Pedley and S. J. Benkovic, A new view into the regulation of purine metabolism: the purinosome, Trends Biochem Sci, vol.42, pp.141-154, 2017.

D. Lopez and G. Koch, Exploring functional membrane microdomains in bacteria: an overview, Curr Opin Microbiol, vol.36, pp.76-84, 2017.

T. Appelhans and K. B. Busch, Dynamic imaging of mitochondrial membrane proteins in specific sub-organelle membrane locations, Biophys Rev, vol.9, pp.345-352, 2017.

D. Lucena, M. Mauri, F. Schmidt, B. Eckhardt, and P. L. Graumann, Microdomain formation is a general property of bacterial membrane proteins and induces heterogeneity of diffusion patterns, BMC Biol, vol.16, p.97, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01966627

A. Magalon, R. Arias-cartin, and A. Walburger, Supramolecular organization in prokaryotic respiratory systems, Adv Microb Physiol, vol.61, pp.217-266, 2012.

E. Lapuente-brun, R. Moreno-loshuertos, R. Acín-pérez, A. Latorre-pellicer, C. Colás et al., Supercomplex assembly determines electron flux in the mitochondrial electron transport chain, Science, vol.340, pp.1567-1570, 2013.

G. Lenaz, G. Tioli, A. I. Falasca, and M. L. Genova, Complex I function in mitochondrial supercomplexes, Biochim Biophys Acta, vol.1857, pp.991-1000, 2016.

M. Trouillard, B. Meunier, and F. Rappaport, Questioning the functional relevance of mitochondrial supercomplexes by time-resolved analysis of the respiratory chain, Proc Natl Acad Sci U S A, vol.108, pp.1027-1034, 2011.

J. G. Fedor and J. Hirst, Mitochondrial supercomplexes do not enhance catalysis by quinone channeling, Cell Metab, vol.28, pp.525-531, 2018.

H. Kirchhoff, Diffusion of molecules and macromolecules in thylakoid membranes, Biochim Biophys Acta, vol.1837, pp.495-502, 2014.

H. G. Enoch and R. L. Lester, The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli, J Biol Chem, vol.250, pp.6693-6705, 1975.

M. Jormakka, S. Tornroth, J. Abramson, B. Byrne, and S. Iwata, Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli, Acta Crystallogr D Biol Crystallogr, vol.58, pp.160-162, 2002.

S. Gupte, E. S. Wu, L. Hoechli, M. Hoechli, K. Jacobson et al., Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components, Proc Natl Acad Sci U S A, vol.81, pp.2606-2610, 1984.

I. Budin, T. De-rond, Y. Chen, L. Chan, C. J. Petzold et al., Viscous control of cellular respiration by membrane lipid composition, Science, vol.362, pp.1186-1189, 2018.

L. D. Renner and D. B. Weibel, Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes, Proc Natl Acad Sci U S A, vol.108, pp.6264-6269, 2011.

P. M. Oliver, J. A. Crooks, M. Leidl, E. J. Yoon, A. Saghatelian et al., Localization of anionic phospholipids in Escherichia coli cells, J Bacteriol, vol.196, pp.3386-3398, 2014.

R. Arias-cartin, S. Grimaldi, J. Pommier, P. Lanciano, C. Schaefer et al., Cardiolipin-based respiratory complex activation in bacteria, Proc Natl Acad Sci U S A, vol.108, pp.7781-7786, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00677353

T. Romantsov, S. Helbig, D. E. Culham, C. Gill, L. Stalker et al., Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli, Mol Microbiol, vol.64, pp.1455-1465, 2007.

Y. M. Park, H. J. Lee, J. H. Jeong, J. K. Kook, H. E. Choy et al., Branched-chain amino acid supplementation promotes aerobic growth of Salmonella Typhimurium under nitrosative stress conditions, Arch Microbiol, vol.197, pp.1117-1127, 2015.

J. L. Robinson and M. P. Brynildsen, A kinetic platform to determine the fate of nitric oxide in Escherichia coli, PLoS Comput Biol, vol.9, 2013.

L. C. Potter, P. Millington, L. Griffiths, G. H. Thomas, and J. A. Cole, Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth?, Biochem J, vol.344, pp.77-84, 1999.

M. Guzzo, S. M. Murray, E. Martineau, S. Lhospice, G. Baronian et al., A gated relaxation oscillator mediated by FrzX controls morphogenetic movements in Myxococcus xanthus, Nat Microbiol, vol.3, pp.948-959, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02158036

T. Baba, A. T. Hasegawa, M. Takai, Y. Okumura, Y. Baba et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol Syst Biol, vol.2, 2006.

L. C. Thomason, N. Costantino, and D. L. Court, E. coli genome manipulation by P1 transduction, Curr Protoc Mol Biol Chapter, 2007.

P. P. Cherepanov and W. Wackernagel, Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant, Gene, vol.158, issue.95, p.193, 1995.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc Natl Acad Sci U S A, vol.97, pp.6640-6645, 2000.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: a peptide search engine integrated into the MaxQuant environment, J Proteome Res, vol.10, pp.1794-1805, 2011.

J. Cox, M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj et al., Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol Cell Proteomics, vol.13, pp.2513-2526, 2014.

J. Ruiz-herrera and J. A. Demoss, Nitrate reductase complex of Escherichia coli K-12: participation of specific formate dehydrogenase and cytochrome b1 components in nitrate reduction, J Bacteriol, vol.99, pp.720-729, 1969.

O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J Biol Chem, vol.193, pp.265-275, 1951.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an opensource platform for biological-image analysis, Nat Methods, vol.9, pp.676-682, 2012.

A. Ducret, E. M. Quardokus, and Y. V. Brun, MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis, Nat Microbiol, vol.1, p.16077, 2016.