H. C. Apolinário, E. A. Quiroz, and P. R. Oliveira, A scalarization proximal point method for quasiconvex multiobjective minimization, J. Glob. Optim, vol.64, pp.79-96, 2016.

M. Ba?ák and J. M. Borwein, On difference convexity of locally Lipschitz functions, Optimization, vol.60, pp.961-978, 2011.

J. Y. Bello-cruz, A subgradient method for vector optimization problems, SIAM J. Optim, vol.23, pp.2169-2182, 2013.

G. C. Bento, C. Neto, J. X. López, G. Soubeyran, A. Souza et al., The proximal point method for locally Lipschitz functions in multiobjective optimization with application to the compromise problem, SIAM J. Optim, vol.28, issue.2, pp.1104-1120, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01985333

G. C. Bento, C. Neto, J. X. Soubeyran, and A. , A proximal point-type method for multicriteria optimization. Set-Valued Var, Anal, vol.22, pp.557-573, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01463765

G. C. Bento, C. Neto, J. X. Oliveira, P. R. Soubeyran, and A. , The self regulation problem as an inexact steepest descent method for multicriteria optimization, Eur. J. Oper. Res, vol.235, pp.494-502, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01474415

G. C. Bento and A. Soubeyran, Generalized inexact proximal algorithms: routine's formation with resistance to change, following worthwhile changes, J. Optim. Theory Appl, vol.166, pp.172-187, 2015.

G. C. Bento and A. Soubeyran, A generalized inexact proximal point method for nonsmooth functions that satisfies Kurdyka-Lojasiewicz inequality. Set-Valued Var, Anal, vol.23, pp.501-517, 2015.

J. Bolte, A. Danilidis, A. Lewis, and M. Shiota, Clarke critical values of subanalytic Lipschitz continuous functions, Ann. Polon. Math, vol.87, pp.13-25, 2005.

H. Bonnel, A. N. Iusem, and B. F. Svaiter, Proximal methods in vector optimization, SIAM J. Optim, vol.15, pp.953-970, 2005.

A. S. Brito, C. Neto, J. X. Santos, P. S. Souza, and S. S. , A relaxed projection method for solving multiobjective optimization problems, Eur. J. Oper. Res, vol.256, pp.17-23, 2017.

J. V. Burke, M. C. Ferris, and M. Qian, On the Clarke subdifferential of the distance function of a closed set, J. Math. Anal. Appl, vol.166, pp.199-213, 1992.

L. C. Ceng and J. C. Yao, Approximate proximal methods in vector optimization, Eur. J. Oper. Res, vol.183, pp.1-19, 2007.

L. C. Ceng, B. S. Mordukhovich, and J. C. Yao, Hybrid approximate proximal method with auxiliary variational inequality for vector optimization, J. Optim. Theory Appl, vol.146, pp.267-303, 2010.

T. D. Choung, B. S. Mordukhovich, and J. C. Yao, Hybrid approximate proximal algorithms for efficient solutions in vector optimization, J. Nonlinear Convex Anal, vol.12, pp.257-286, 2011.

F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc, vol.205, pp.247-262, 1975.

F. H. Clarke, Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, v, vol.5, 1990.

C. Neto, J. X. Oliveira, P. R. Soubeyran, A. Souza, and J. C. , A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01985336

C. Neto, J. X. Silva, G. J. Ferreira, O. P. Lopes, and J. O. , A subgradient method for multiobjective optimization, Comput Optim Appl, vol.54, pp.461-472, 2013.

N. Dinh, J. J. Strodiot, and V. H. Nguyen, Duality and optimality conditions for generalized equilibrium problems involving DC functions, Glob. Optim, vol.48, pp.183-208, 2010.

A. Ferrer, A. Bagirov, and G. Beliakov, Solving DC programs using the cutting angle method, J. Glob. Optim, vol.61, pp.71-89, 2015.

J. Fliege, L. M. Graña-drummond, and B. F. Svaiter, Newton's method for multiobjective optimization, SIAM J. Optim, vol.20, issue.2, pp.602-626, 2009.

F. Flores-bazán and W. Oettli, Simplified optimality conditions for minimizing the difference of vector-valued functions, J. Optim. Theory Appl, vol.108, pp.571-586, 2001.

E. H. Fukuda and L. M. Drummond, On the convergence of the projected gradient method for vector optimization, Optimization, vol.60, pp.1009-1021, 2011.

E. H. Fukuda and L. M. Drummond, A survey on multiobjective descent methods, Pesqui. Oper, vol.34, pp.585-620, 2014.

G. Drummond, L. M. Iusem, and A. N. , A projected gradient method for vector optimization problems, Comput Optim Appl, vol.28, pp.5-29, 2004.

G. Drummond, L. M. Svaiter, and B. F. , A steepest descent method for vector optimization, J. Comput. Appl. Math, vol.175, pp.395-414, 2005.

X. L. Guo and S. J. Li, Optimality conditions for vector optimization problems with difference of convex maps, J. Optim. Theory Appl, vol.162, pp.821-844, 2014.

P. Hartman, On functions representable as a difference of convex functions, Pac. J. Math, vol.9, pp.707-713, 1959.

J. B. Hiriart-urruty, Generalized differentiabity, duality and optimization for problems dealing with difference of convex functions, Convexity and Duality in Optimization, Lecture Notes in Economics and Mathematical Systems, vol.256, pp.37-70, 1986.

K. Holmberg and H. Tuy, A production-transportation problem with stochastic demand and concave production costs, Math. Program, vol.85, pp.157-179, 1999.

X. X. Huang and X. Q. Yang, Duality for multiobjective optimization via nonlinear Lagrangian functions, J. Optim. Theory Appl, vol.120, pp.111-127, 2004.

J. Jahn, Vector Optimization: Theory, Applications and Extensions, 2004.

Y. Ji, M. Goh, and R. De-souza, Proximal point algorithms for multi-criteria optimization with the difference of convex objective functions, J. Optim. Theory Appl, vol.169, pp.280-289, 2016.

K. Lewin, Frontiers in group dynamics: concept, method and reality in social science; social equilibria and social change, Human Relations, vol.1, pp.5-41, 1947.

K. Lewin, Field Theory in Social Science. Harper torchbooks, 1964.

D. T. Luc, N. X. Tan, and P. N. Tinh, Convex Vector Functions and their Subdifferential, Acta Math Vietnam, vol.23, pp.107-127, 1998.

D. T. Luc, Theory of Vector Optimization, Lecture Notes in Econom. and Math. Syst, 1989.

T. T. Mai and D. V. Luu, Optimality conditions for weakly efficient solutions of vector variational inequalities via convexificators, J. Nonlinear Var. Anal, vol.2, pp.379-389, 2018.

B. Martinet, Regularisation d'inéquations variationelles par approximations succesives. Rev. Francaise d'Inform. Recherche Oper, vol.4, pp.154-159, 1970.

K. M. Miettinen, Nonlinear Multiobjective Optimization. Norwell, Kluwer Academic, 1999.

M. Minami, Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space, J. Optim. Theory Appl, vol.41, pp.451-461, 1983.

J. J. Moreau, Proximité et dualité dans un espace Hilbertien, Bull. Soc. Math. France, vol.93, pp.273-299, 1965.

F. G. Moreno, P. R. Oliveira, and A. Soubeyran, A proximal point algorithm with quasi distance. Application to habit's formation, Optimization, vol.61, pp.1383-1403, 2012.

P. Maingé and A. Moudafi, Convergence of new inertial proximal methods for DC programming, SIAM J. Optim, vol.19, pp.397-413, 2008.

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Grundlehren der Mathematischen Wissenschaften, vol.330, 2006.

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. II. Applications, Grundlehren der Mathematischen Wissenschaften, vol.331, 2006.

B. S. Mordukhovich, Variational Analysis and Applications, 2018.

L. D. Muu and T. D. Quoc, One step from DC optimization to DC mixed variational inequalities, Optimization, vol.59, pp.63-76, 2010.

M. S. Poole and A. H. Van-de-ven, Handbook of Organizational Change and Innovation, 2004.

S. Qu, C. Liu, M. Goh, Y. Li, and Y. Ji, Nonsmooth multiobjective programming with quasi-Newton methods, Eur. J. Oper. Res, vol.235, pp.503-510, 2014.

S. Qu, M. Goh, Y. Ji, and R. De-souza, A new algorithm for linearly constrained c-convex vector optimization with a supply chain network risk application, Eur. J. Oper. Res, vol.247, pp.359-365, 2015.

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control. Optim, vol.14, pp.877-898, 1976.

G. T. Ross and R. M. Soland, A multicriteria approach to the location of public facilities, Eur. J. Oper. Res, vol.4, pp.307-321, 1980.

A. Soubeyran, Variational rationality, a theory of individual stability and change: worthwhile and ambidextry behaviors, 2009.

A. Soubeyran, Variational rationality and the "unsatisfied man": routines and the course pursuit between aspirations, capabilities and beliefs, 2010.

A. Soubeyran, Variational rationality. A theory of worthwhile stay and change approach-avoidance transitions ending in traps, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02084636

A. Soubeyran, Variational rationality.1. An adaptive theory of the unsatisfied man, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02084636

A. Soubeyran, Variational rationality. 2. A general theory of goals and intentions as satisficing worthwhile moves. GREQAM-AMSE, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02084636

J. C. Souza and P. R. Oliveira, A proximal point algorithm for DC functions on Hadamard manifolds, J. Glob. Optim, vol.63, pp.797-810, 2015.

W. Sun, R. J. Sampaio, and M. A. Candido, Proximal point algorithm for minimization of DC Functions, Journal of Computational Mathematics, vol.21, pp.451-462, 2003.

P. D. Tao and E. B. Souad, Algorithms for solving a class of nonconvex optimization problems: methods of subgradient, Mathematics for Optimization, vol.85, pp.249-270, 1986.

P. D. Tao and L. T. An, A DC Optimization algorithm for solving the trust region subproblem, SIAM J. Optim, vol.8, pp.476-505, 1998.

L. Thibault, Subdifferentials of nonconvex vector-valued functions, J. Math. Anal. Appl, vol.86, pp.319-344, 1982.

H. Tuy and R. Horst, Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization and dc optimization problems, Math. Program, vol.41, pp.161-183, 1988.

K. D. Villacorta and P. R. Oliveira, An interior proximal method in vector optimization, Eur. J. Oper. Res, vol.214, pp.485-492, 2011.

B. Wen, X. Chen, and T. K. Pong, A proximal difference-of-convex algorithm with extrapolation, Comput Optim Appl, vol.69, pp.297-324, 2018.