Competitive equilibrium cycles for small discounting in discrete-time two-sector optimal growth models
Abstract
We study the existence of endogenous competitive equilibrium cycles under small discounting in a two-sector discrete-time optimal growth model. We provide precise concavity conditions on the indirect utility function leading to the existence of period-two cycles with a critical value for the discount factor that can be arbitrarily close to one. Contrary to the continuous-time case where the existence of periodic-cycles is obtained if the degree of concavity is close to zero, we show that in a discrete-time setting the driving condition does not require a close to zero degree of concavity but a symmetry of the indirect utility function’s concavity properties with respect to its two arguments.
Origin : Publication funded by an institution
Loading...