H. Alle and J. R. Geiger, Combined analog and action potential coding in hippocampal mossy fibers, Science, vol.311, pp.1290-1293, 2006.

H. Alle and J. R. Geiger, Analog signalling in mammalian cortical axons, Curr. Opin. Neurobiol, vol.18, pp.314-320, 2008.

G. B. Awatramani, G. D. Price, and L. O. Trussell, Modulation of transmitter release by presynaptic resting potential and background calcium levels, Neuron, vol.48, pp.109-121, 2005.

R. Begum, Y. Bakiri, K. E. Volynski, and D. M. Kullmann, Action potential broadening in a presynaptic channelopathy, Nat. Commun, vol.7, p.12102, 2016.

A. Bialowas, S. Rama, M. Zbili, V. Marra, L. Fronzaroli-molinieres et al., Analog modulation of spike-evoked transmission in CA3 circuits is determined by axonal Kv1.1 channels in a time-dependent manner, Eur. J. Neurosci, vol.41, pp.293-304, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01766833

J. Bischofberger, J. R. Geiger, J. , and P. , Timing and efficacy of Ca 2+ channel activation in hippocampal mossy fiber boutons, J. Neurosci, vol.22, pp.10593-10602, 2002.

J. H. Bollmann, B. Sakmann, and J. G. Borst, Calcium sensitivity of glutamate release in a calyx-type terminal, Science, vol.289, pp.953-957, 2000.

J. G. Borst and B. Sakmann, Facilitation of presynaptic calcium currents in the rat brainstem, J. Physiol, vol.513, pp.149-155, 1998.

B. Bouhours, F. F. Trigo, M. , and A. , Somatic depolarization enhances GABA release in cerebellar interneurons via a calcium/protein kinase C pathway, J. Neurosci, vol.31, pp.5804-5815, 2011.

D. L. Brody and D. T. Yue, Release-independent short-term synaptic depression in cultured hippocampal neurons, J. Neurosci, vol.20, pp.2480-2494, 2000.

J. Brunner and J. Szabadics, Analogue modulation of back-propagating action potentials enables dendritic hybrid signalling, Nat. Commun, vol.7, p.13033, 2016.

R. M. Bruno and B. Sakmann, Cortex is driven by weak but synchronously active thalamocortical synapses, Science, vol.312, pp.1622-1627, 2006.

I. Bucurenciu, A. Kulik, B. Schwaller, M. Frotscher, J. et al., Nanodomain coupling between Ca 2+ channels and Ca 2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse, Neuron, vol.57, pp.536-545, 2008.

I. H. Cho, L. C. Panzera, M. Chin, and M. B. Hoppa, Sodium channel ?2 subunits prevent action potential propagation failures at axonal branch points, J. Neurosci, vol.37, pp.9519-9533, 2017.

J. M. Christie and C. E. Jahr, Selective expression of ligand-gated ion channels in L5 pyramidal cell axons, J. Neurosci, vol.29, pp.11441-11450, 2009.

J. M. Christie, D. N. Chiu, and C. E. Jahr, Ca 2+ -dependent enhancement of release by subthreshold somatic depolarization, Nat. Neurosci, vol.14, pp.62-68, 2011.

B. Clark and M. Häusser, Neural coding: hybrid analog and digital signalling in axons, Curr. Biol, vol.16, 2006.

J. A. Connor, R. Kretz, and E. Shapiro, Calcium levels measured in a presynaptic neurone of Aplysia under conditions that modulate transmitter release, J. Physiol, vol.375, pp.625-642, 1986.

A. I. Cowan and C. Stricker, Functional connectivity in layer IV local excitatory circuits of rat somatosensory cortex, J. Neurophysiol, vol.92, pp.2137-2150, 2004.

G. W. Crabtree, Z. Sun, M. Kvajo, J. A. Broek, K. Fénelon et al., Alteration of neuronal excitability and short-term synaptic plasticity in the prefrontal cortex of a mouse model of mental illness, J. Neurosci, vol.37, pp.4158-4180, 2017.

M. F. Cuttle, T. Tsujimoto, I. D. Forsythe, T. ;. Takahashi, A. Harsch et al., Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem, J. Neurosci, vol.512, pp.5657-5665, 1998.

D. Debanne, A. Bialowas, and S. Rama, What are the mechanisms for analogue and digital signalling in the brain?, Nat. Rev. Neurosci, vol.14, pp.63-69, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01766838

D. Castillo, J. Katz, and B. , Changes in end-plate activity produced by presynaptic polarization, J. Physiol, vol.124, pp.586-604, 1954.

P. Y. Deng, Z. Rotman, J. A. Blundon, Y. Cho, J. Cui et al., FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels, Neuron, vol.77, pp.696-711, 2013.

Y. Dong and F. J. White, Dopamine D1-class receptors selectively modulate a slowly inactivating potassium current in rat medial prefrontal cortex pyramidal neurons, J. Neurosci, vol.23, pp.2686-2695, 2003.

J. Dudel, The effect of polarizing current on action potential and transmitter release in crayfish motor nerve terminals, Pflugers Arch, vol.324, pp.227-248, 1971.

C. G. Evans, B. Ludwar, J. Askanas, and E. C. Cropper, Effect of holding potential on the dynamics of homosynaptic facilitation, J. Neurosci, vol.31, pp.11039-11043, 2011.

E. S. Faber and P. Sah, Ca 2+ -activated K + (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala, J. Physiol, vol.552, pp.483-497, 2003.

M. J. Fedchyshyn and L. Y. Wang, Developmental transformation of the release modality at the calyx of Held synapse, J. Neurosci, vol.25, pp.4131-4140, 2005.

A. Fekete, J. Johnston, and K. R. Delaney, Presynaptic T-type Ca 2+ channels modulate dendrodendritic mitral-mitral and mitral-periglomerular connections in mouse olfactory bulb, J. Neurosci, vol.34, pp.14032-14045, 2014.

C. C. Gandhi and L. D. Matzel, Modulation of presynaptic action potential kinetics underlies synaptic facilitation of type B photoreceptors after associative conditioning in Hermissenda, J. Neurosci, vol.20, pp.2022-2035, 2000.

J. R. Geiger, J. , and P. , Dynamic control of presynaptic Ca 2+ inflow by fast-inactivating K + channels in hippocampal mossy fiber boutons, Neuron, vol.28, pp.927-939, 2000.

P. Gogan, J. P. Gueritaud, and S. Tyc-dumont, Comparison of antidromic and orthodromic action potentials of identified motor axons in the cat's brain stem, J. Physiol, vol.335, pp.205-220, 1983.

E. M. Goldberg, B. D. Clark, E. Zagha, M. Nahmani, A. Erisir et al., K + channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons, Neuron, vol.58, pp.387-400, 2008.

S. Hagiwara and I. Tasaki, A study on the mechanism of impulse transmission across the giant synapse of the squid, J. Physiol, vol.143, pp.114-137, 1958.

M. Hausser, G. Major, and G. J. Stuart, Differential shunting of EPSPs by action potentials, Science, vol.291, pp.138-141, 2001.

Y. He, C. F. Zorumski, and S. Mennerick, Contribution of presynaptic Na + channel inactivation to paired-pulse synaptic depression in cultured hippocampal neurons, J. Neurophysiol, vol.87, pp.925-936, 2002.

R. A. Hill, A. M. Li, and J. Grutzendler, Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain, Nat. Neurosci, vol.21, pp.683-695, 2018.

M. B. Hoppa, G. Gouzer, M. Armbruster, and T. A. Ryan, Control and plasticity of the presynaptic action potential waveform at small CNS nerve terminals, Neuron, vol.84, pp.778-789, 2014.

T. Hori and T. Takahashi, Mechanisms underlying short-term modulation of transmitter release by presynaptic depolarization, J. Physiol, vol.587, pp.2987-3000, 2009.

H. Hu, A. , and A. , Differential excitation of distally versus proximally targeting cortical interneurons by unitary thalamocortical bursts, J. Neurosci, vol.36, pp.6906-6916, 2016.

H. Hu, J. Gan, J. , and P. , Interneurons. Fast-spiking, parvalbumin + GABAergic interneurons: from cellular design to microcircuit function, Science, vol.345, p.1255263, 2014.

H. Hu, J. , and P. , A supercritical density of Na + channels ensures fast signaling in GABAergic interneuron axons, Nat Neurosci, vol.17, pp.686-693, 2014.

W. Hu, C. Tian, T. Li, M. Yang, H. Hou et al., Distinct contributions of Na v 1.6 and Na v 1.2 in action potential initiation and backpropagation, Nat. Neurosci, vol.12, pp.996-1002, 2009.

J. I. Hubbard and W. D. Willis, Hyperpolarization of mammalian motor nerve terminals, J. Physiol, vol.163, pp.115-137, 1962.

J. I. Hubbard and W. D. Willis, The effects of depolarization of motor nerve terminals upon the release of transmitter by nerve impulses, J. Physiol, vol.194, pp.381-405, 1968.

A. I. Ivanov and R. L. Calabrese, Modulation of spike-mediated synaptic transmission by presynaptic background Ca 2+ in leech heart interneurons, J. Neurosci, vol.23, pp.1206-1218, 2003.

M. B. Jackson, A. Konnerth, A. , and G. J. , Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals, Proc. Natl. Acad. Sci. U S A, vol.88, pp.380-384, 1991.

M. Juusola, H. P. Robinson, and G. G. De-polavieja, Coding with spike shapes and graded potentials in cortical networks, Bioessays, vol.29, pp.178-187, 2007.

S. Y. Kawaguchi and T. Sakaba, Control of inhibitory synaptic outputs by low excitability of axon terminals revealed by direct recording, Neuron, vol.85, pp.1273-1288, 2015.

S. Kim, Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus, PLoS One, vol.9, p.113124, 2014.

J. Kim, D. S. Wei, and D. A. Hoffman, Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones, J. Physiol, vol.569, pp.41-57, 2005.

M. H. Kole, J. J. Letzkus, and G. J. Stuart, Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy, Neuron, vol.55, pp.633-647, 2007.

K. Kusano, D. R. Livengood, and R. Werman, Correlation of transmitter release with membrane properties of the presynaptic fiber of the squid giant synapse, J. Gen. Physiol, vol.50, pp.2579-2601, 1967.

P. W. Liu, N. T. Blair, and B. P. Bean, Action potential broadening in capsaicin-sensitive DRG neurons from frequency-dependent reduction of Kv3 current, J. Neurosci, vol.37, pp.9705-9714, 2017.

B. C. Ludwar, C. G. Evans, M. Cambi, and E. C. Cropper, Activitydependent increases in [Ca 2+ ]i contribute to digital-analog plasticity at a molluscan synapse, J. Neurophysiol, vol.117, pp.2104-2112, 2017.

B. Ludwar, C. G. Evans, J. Jing, and E. C. Cropper, Two distinct mechanisms mediate potentiating effects of depolarization on synaptic transmission, J. Neurophysiol, vol.102, 1976.

Y. Ma, P. O. Bayguinov, J. , and M. B. , Action potential dynamics in fine axons probed with an axonally targeted optical voltage sensor, 2017.

C. J. Maley, Toward analog neural computation. Minds Mach, vol.28, pp.77-91, 2018.

R. Miledi and C. R. Slater, The action of calcium on neuronal synapses in the squid, J. Physiol, vol.184, pp.473-498, 1966.

E. Neher and T. Sakaba, Multiple roles of calcium ions in the regulation of neurotransmitter release, Neuron, vol.59, pp.861-872, 2008.

A. Neishabouri and A. A. Faisal, Axonal noise as a source of synaptic variability, PLoS Comput. Biol, vol.10, p.1003615, 2014.

J. Nicholls and B. G. Wallace, Modulation of transmission at an inhibitory synapse in the central nervous system of the leech, J. Physiol, vol.281, pp.157-170, 1978.

S. Ohura and H. Kamiya, Short-term depression of axonal spikes at the mouse hippocampal mossy fibers and sodium channel-dependent modulation. eNeuro 5:ENEURO.0415-17, 2018.

D. Park and K. Dunlap, Dynamic regulation of calcium influx by Gproteins, action potential waveform, and neuronal firing frequency, J. Neurosci, vol.18, pp.6757-6766, 1998.

R. R. Patel, C. Barbosa, Y. Xiao, and T. R. Cummins, Human Nav1.6 channels generate larger resurgent currents than human Nav1.1 channels, but the Navbeta4 peptide does not protect either isoform from use-dependent reduction, PLoS One, vol.10, p.133485, 2015.

M. Prakriya and S. Mennerick, Selective depression of low-release probability excitatory synapses by sodium channel blockers, Neuron, vol.26, pp.671-682, 2000.

S. Rama, M. Zbili, A. Bialowas, L. Fronzaroli-molinieres, N. Ankri et al., Presynaptic hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium channels, Nat. Commun, vol.6, p.10163, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01766831

S. Rama, M. Zbili, and D. Debanne, Modulation of spike-evoked synaptic transmission: the role of presynaptic calcium and potassium channels, Biochim. Biophys. Acta, vol.1853, pp.1933-1939, 2015.

M. J. Rowan, C. , and J. M. , Rapid state-dependent alteration in Kv3 channel availability drives flexible synaptic signaling dependent on somatic subthreshold depolarization. Cell Rep, vol.18, 2017.

M. J. Rowan, G. Delcanto, J. J. Yu, N. Kamasawa, C. et al., , 2016.

, Synapse-level determination of action potential duration by K + channel clustering in axons, Neuron, vol.91, pp.370-383

A. Ruiz, E. Campanac, R. S. Scott, D. A. Rusakov, and D. M. Kullmann, Presynaptic GABA A receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses, Nat. Neurosci, vol.13, pp.431-438, 2010.

A. Ruiz, R. Fabian-fine, R. Scott, M. C. Walker, D. A. Rusakov et al., GABA A receptors at hippocampal mossy fibers, Neuron, vol.39, pp.961-973, 2003.

B. L. Sabatini and W. G. Regehr, Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse, J. Neurosci, vol.17, pp.3425-3435, 1997.

T. Sasaki, N. Matsuki, and Y. Ikegaya, Action-potential modulation during axonal conduction, Science, vol.331, pp.599-601, 2011.

T. Sasaki, N. Matsuki, and Y. Ikegaya, Effects of axonal topology on the somatic modulation of synaptic outputs, J. Neurosci, vol.32, pp.2868-2876, 2012.

T. Sasaki, N. Matsuki, and Y. Ikegaya, Interneuron firing precedes sequential activation of neuronal ensembles in hippocampal slices, Eur. J. Neurosci, vol.39, pp.2027-2036, 2014.

C. Saviane, M. H. Mohajerani, and E. Cherubini, An ID-like current that is downregulated by Ca 2+ modulates information coding at CA3-CA3 synapses in the rat hippocampus, J. Physiol, vol.552, pp.513-524, 2003.

R. Scott, A. Ruiz, C. Henneberger, D. M. Kullmann, and D. A. Rusakov, Analog modulation of mossy fiber transmission is uncoupled from changes in presynaptic Ca 2+, J. Neurosci, vol.28, pp.7765-7773, 2008.

R. Scott, A. Sánchez-aguilera, K. Van-elst, L. Lim, N. Dehorter et al., Loss of Cntnap2 causes axonal excitability deficits, developmental delay in cortical myelination, and abnormal stereotyped motor behavior, Cereb. Cortex, vol.29, pp.586-597, 2019.

L. R. Shao, R. Halvorsrud, L. Borg-graham, and J. F. Storm, The role of BK-type Ca 2+ -dependent K + channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells, J. Physiol, vol.521, pp.135-146, 1999.

E. Shapiro, V. F. Castellucci, and E. R. Kandel, Presynaptic membrane potential affects transmitter release in an identified neuron in Aplysia by modulating the Ca 2+ and K + currents, Proc. Natl. Acad. Sci. U S A, vol.77, pp.629-633, 1980.

T. Shimahara, Modulation of synaptic output by the transient outward potassium current in aplysia, Neurosci. Lett, vol.24, issue.81, pp.90237-90245, 1981.

T. Shimahara, Presynaptic modulation of transmitter release by the early outward potassium current in Aplysia, Brain Res, vol.263, issue.83, p.91199, 1983.

T. Shimahara and B. Peretz, Soma potential of an interneurone controls transmitter release in a monosynaptic pathway in Aplisia, Nature, vol.273, pp.158-160, 1978.

T. Shimahara and L. Tauc, Multiple interneuronal afferents to the giant cells in Aplysia, J. Physiol, vol.247, pp.299-319, 1975.

Y. Shu, A. Hasenstaub, A. Duque, Y. Yu, and D. A. Mccormick, Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential, Nature, vol.441, pp.761-765, 2006.

Y. Shu, Y. Yu, J. Yang, and D. A. Mccormick, Selective control of cortical axonal spikes by a slowly inactivating K + current, Proc. Natl. Acad. Sci. U S A, vol.104, pp.11453-11458, 2007.

M. C. Sierksma and J. G. Borst, Resistance to action potential depression of a rat axon terminal in vivo, Proc. Natl. Acad. Sci. U S A, vol.114, pp.4249-4254, 2017.

A. Takeuchi and N. Takeuchi, Electrical changes in pre-and postsynaptic axons of the giant synapse of Loligo, J. Gen. Physiol, vol.45, pp.1181-1193, 1962.

T. Tateno and H. P. Robinson, Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics, J. Neurophysiol, vol.95, pp.2650-2663, 2006.

L. L. Thio and K. A. Yamada, Differential presynaptic modulation of excitatory and inhibitory autaptic currents in cultured hippocampal neurons, Brain Res, vol.1012, pp.22-28, 2004.

I. Timofeev, C. , and S. , Sleep slow oscillation and plasticity, Curr. Opin. Neurobiol, vol.44, pp.116-126, 2017.

R. Turecek and L. O. Trussell, Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse, Nature, vol.411, pp.587-590, 2001.

U. Vivekananda, P. Novak, O. D. Bello, Y. E. Korchev, S. S. Krishnakumar et al., Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization, Proc. Natl. Acad. Sci. U S A, vol.114, pp.2395-2400, 2017.

Y. Xia, Y. Zhao, M. Yang, S. Zeng, and Y. Shu, Regulation of action potential waveforms by axonal GABA A receptors in cortical pyramidal neurons, PLoS One, vol.9, p.100968, 2014.

J. Yang, M. Ye, C. Tian, M. Yang, Y. Wang et al., Dopaminergic modulation of axonal potassium channels and action potential waveform in pyramidal neurons of prefrontal cortex, J. Physiol, vol.591, pp.3233-3251, 2013.

Y. M. Yang and L. Y. Wang, Amplitude and kinetics of action potential-evoked Ca 2+ current and its efficacy in triggering transmitter release at the developing calyx of Held synapse, J. Neurosci, vol.26, pp.5698-5708, 2006.

M. Zbili, S. Rama, and D. Debanne, Dynamic control of neurotransmitter release by presynaptic potential, Front. Cell. Neurosci, vol.10, p.278, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01766828

J. Zhu, M. Jiang, M. Yang, H. Hou, and Y. Shu, Membrane potentialdependent modulation of recurrent inhibition in rat neocortex, PLoS Biol, vol.9, p.1001032, 2011.

Z. De-san-martin, J. Trigo, F. F. Kawaguchi, and S. Y. , , 2017.

, Axonal GABA A receptors depolarize presynaptic terminals and facilitate transmitter release in cerebellar Purkinje cells, J. Physiol, vol.595, pp.7477-7493

R. S. Zucker and W. G. Regehr, Short-term synaptic plasticity, Annu. Rev. Physiol, vol.64, pp.355-405, 2002.

, Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

©. Copyright and D. Zbili, This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, 2019.