
Research Article Vol. 2, No. 10 / 15 October 2019 / OSA Continuum 2891

Nonlinear optical properties of Rh–Pd and
Rh–Pt solid-solution alloy nanoparticles
prepared by a laser-induced nucleation method
in aqueous solution

MD. SAMIUL ISLAM SARKER,1,* TAKAHIRO NAKAMURA,2 ALI
HOSSAIN,1 YUICHI KOZAWA,2 AND SHUNICHI SATO2

1Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh
2Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1,
Aoba-ku, Sendai 980-8577, Japan
*samiul-phy@ru.ac.bd

Abstract: The nonlinear optical properties of Rh–Pd and Rh–Pt solid-solution alloy nanopar-
ticles (NPs) were experimentally investigated by means of the z-scan technique. The open
aperture (OA) measurement showed a reverse saturable behavior, whereas the closed aperture
(CA) measurement showed a peak- and valley-shape. Both the Rh–Pd and Rh–Pt NPs exhibited a
positive nonlinear optical index of refraction at 800 nm relating to the self-focusing phenomenon.
In addition, the nonlinear absorption of the Rh–Pt NPs (4.39 × 10−12 cm/W) was higher than
that of the Rh–Pd NPs (1.63 × 10−12 cm/W) due to the small interval between the occupied
and unoccupied density of states (DOS) of Rh–Pt than Rh–Pd. The nonlinear responses of the
Rh–Pd and Rh–Pt NPs was attributed to the hot electron contribution and the reverse saturation
of intraband and interband transitions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Due to the advanced technique for the preparation of nanoparticles (NPs) with well controlled
size, structure and composition, it is possible to extend the study on nonlinear optical properties
from organic materials to NPs based systems. The nonlinear optical properties of noble metal
NPs such as Au, Ag, Cu, Pt, and Pd possess surface plasmon resonance (SPR) bands in the
UV-visible range have been extensively studied [1–5]. The nonlinear optical properties of
metallic NPs are important for several applications such as optical limiters, optical data storage
and optical switching [4,5–8]. Optical nonlinearities such as saturable absorption (SA) and
reverse saturable absorption (RSA) have been reported in different nanomaterials. Saturation of
excited state or bleaching of ground state results in SA, while, free carrier absorption (FCA) or
multiphoton absorption causes the RSA [9–16]. Materials exhibiting SA are used for optical
pulse compression, optical switching and laser pulse narrowing. On the other hand, materials
exhibiting RSA used for optical limiters in eye protections and sensors against the damage of
sudden light exposure with high intensity, and it still remains a challenging problem.

Transition metal NPs, especially the Rh, Pd and Pt NPs and their alloys have attracted intensive
interests for their catalytic activities [17–21]. However, quite a few researches have been reported
for their nonlinear optical properties. For example, G. Fang et al. [4] reported the nonlinear
absorption and refraction of Pd NPs using the z-scan technique. They used a nanosecond laser
at a wavelength of 532 nm and revealed that the nonlinear optical absorption of Pd NPs was
attributed to SA and two photon absorption (TPA). Moreover, Ganeev et al. [22] also reported the
nonlinear optical properties of Au, Pd, Pt and Ru NPs using the z-scan technique with different
pulse durations at 792 nm. They have reported a self-focusing effect of Pd NPs. When the
sample was pumped by 120 fs pulse, positive nonlinear absorption was found over a broad range

#373423 https://doi.org/10.1364/OSAC.2.002891
Journal © 2019 Received 23 Jul 2019; revised 20 Sep 2019; accepted 20 Sep 2019; published 1 Oct 2019

https://orcid.org/0000-0002-5399-6150
https://orcid.org/0000-0002-9886-9083
https://doi.org/10.1364/OA_License_v1


Research Article Vol. 2, No. 10 / 15 October 2019 / OSA Continuum 2892

of pulse intensity variations, and it became negligible when the sample was pumped by 210 ps
pulse. Ganeev et al. [23] had also investigated the nonlinear absorption and refraction of Ru,
Pd, and Au NPs using the z-scan technique with 50 ps laser pulses at 1064 nm and found that
the Pd NPs exhibited a self-defocusing effect and positive nonlinear absorption. They predicted
the nonlinear refraction arises from the optical Kerr effect. Besides, G. Fang et al. [5] also
studied the nonlinear absorption and refraction of Pd and Pt NPs using femtosecond pulses and
explained the nonlinear absorption was due to the TPA. However, to our best knowledge, optical
nonlinearities of nanometer-sized Rh–Pd and Rh–Pt alloy particles have not yet been investigated
because of the difficulties in the formation of these particles.

We had demonstrated the formation of solid-solution alloy NPs with tunable compositions by
laser-induced nucleation method. In the method, alloy NPs were easily formed by high-intensity
femtosecond irradiation of metallic ion solutions with different mixing ratios [24–26]. The main
objective of this research is to study the third order nonlinear optical properties of Rh–Pd and
Rh–Pt NPs synthesized through the laser-induced nucleation method. The nonlinear optical
properties of around 10 nm-sized Rh–Pd, Rh–Pt NPs were measured using a single beam z-scan
technique using a femtosecond laser. The measurements were carried out for both an open- and
closed-aperture z-scan setup. The mechanism of nonlinearity has been discussed in detail.

2. Experimental details

In order to perform z-scan measurement, colloidal dispersions of Rh–Pd and Rh–Pt NPs were
prepared as follows. Initially, Rh, Pd, Pt aqueous solutions were prepared separately by dissolving
powders of RhCl3·3H2O (99.5%, Wako pure chemical industries Ltd.), PdCl2 and H2PtCl6·6H2O
(99.9%, Sigma Aldrich) in ultra-pure water with the concentration of 2.5×10−4 M. The aqueous
solution containing Rh, Pd and Pt ions were then mixed with 1 : 1 molar ratio of Rh–Pd and
Rh–Pt. In order to protect particles from aggregation, 7 wt% citrate was used as a stabilizing
agent. Following the preparation of the solution, 3 ml of the as-prepared solution was exposed to
femtosecond laser pulses with a wavelength of 800 nm and a pulse duration of 100 fs (Spitfire
Pro, Spectra Physics). Irradiation time was set for 30 min. The details of the synthesis procedure
have been reported elsewhere [24]. Size and shape of fabricated particles were obtained by a
transmission electron microscope (TEM; JEOL, JEM2000EXII) observation operated at 200 kV.
The crystalline structures of fabricated particles were determined by powder X-ray diffraction
(XRD, RINT-V, Rigaku Co.) with a Ni-filtered Cu Kα (λ= 0.15406 nm) X-ray source.

The nonlinear optical properties of the samples were characterized by the z-scan technique
[27]. In the experiment, a Ti:sapphire (λ= 800 nm) laser with a pulse duration of 100 fs was
applied at a pulse repetition rate of 100 Hz. The intensity profile of the laser beam was confirmed
to be a Gaussian distribution. The experimental setup for the z-scan measurement is shown in
Fig. 1. Initially, a glass cuvette of 1 mm thickness was filled with colloidal solution of alloy NPs
and placed on a uniaxial stage. A collimated Ti:sapphire laser beam was focused by a lens with a
focal length of 400 mm. A sample was then moved along the beam axis around the focal area to
observe the change in intensity of the transmitted beam. The waist of the focused beam (1/e2

width) was estimated to be 40.7 µm. The Rayleigh range of the beam was calculated to be 13 mm
following the equation zo = 0.5 kω2

o, where k = 2π/λ is the wavenumber, and 2ωo is the beam
waist. The calculated intensity at the focus was 2.02 × 1012 W/cm2. The laser pulse energy was
measured by an energy meter. In OA system, a photodiode had a sufficiently broad aperture was
placed far from the focus so that the transmitted radiation was entirely detected. The sample
was then moved along the beam axis and the light power transmitted through the sample was
recorded. By contrast, the light power for CA was measured after passing through an aperture.
The radiation energy recorded by the photodiode in the far field was normalized to the radiation
energy recorded before focusing in order to avoid the influence of instability of laser parameters.
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Fig. 1. Experimental setup for the measurement of nonlinear optical characteristics of NPs
suspension through a z-scan technique.

3. Results and discussions

3.1. Characterization of Rh–Pd and Rh–Pt NPs

To confirm the characteristics and structures of the Rh–Pd andRh–PtNPs, UV-visible spectroscopy
and TEM analysis was performed. Figure 2 shows the UV-visible absorption spectra of colloidal
solutions and TEM images of Rh–Pd and Rh–Pt samples. It is seen from UV-visible spectra
that the SPR peaks of Rh–Pd and Rh–Pt are at 270 and 250 nm, respectively. The average
size of the NPs measured from TEM images were 10.2± 2.3 and 11.8± 3.3 nm for Rh–Pd and
Rh–Pt systems, respectively. Further structural analysis of alloy NPs was performed through
HAADF-STEM (high angle annular dark field scanning TEM) and STEM–EDX (scanning
TEM energy dispersive X-ray spectroscopy) elemental mapping of samples as shown in Fig. 3.
Elemental distribution of Rh–Pd and Rh–Pt alloy NPs were analyzed and shown in Fig. 3(b) and
(d). It was clearly illustrated in the figure that each element was homogeneously distributed in
the particles. There is no evidence for the formation of core–shell structured or phase-segregated
particles.

Fig. 2. (a) UV-vis spectra of colloidal suspensions and TEM images of (b) Rh–Pd and (c)
Rh–Pt NPs.

Further, XRD measurement was performed for Rh–Pd and Rh–Pt system to confirm the
crystalline structure and compositions of bimetallic NPs. Figure 4 shows XRD profiles for the
particles fabricated in the 1: 1 ratio of Rh–Pd and Rh–Pt solution of metal ions. The vertical
dot, dash-dot and solid lines indicate the peak positions for (111) and (200) planes of Rh, Pd,
and Pt. A single peak was detected from each sample in the measurement angle range. The
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Fig. 3. (a), (c) represents HAADF-STEM images and (b), (d) shows the corresponding
EDX mappings of Rh–Pd and Rh–Pt NPs synthesized by laser-induced nucleation.

XRD peak positions of Rh–Pd and Rh–Pt NPs for (111) and (200) peak reflections were located
among the peaks of pure Rh, Pd and Pt indicates homogeneous alloy formation occurs through
interdiffusion of Rh and Pd as well as for the Rh–Pt system. This observation strongly indicates
that the fabricated alloys NPs are solid solution. The crystalline size of NPs calculated from
Scherrer’s equation for full width at half maximum (FWHM) of (111) reflections are 11.5 nm and
12.3 nm, respectively for Rh–Pd and Rh–Pt system, which is well matched with values measured
by TEM observation.

Fig. 4. XRD patterns of NPs in the mixed solutions of Rh, Pd and Pt ions.

The lattice parameter for alloy NPs was estimated from interplanar spacing of fcc structure as
follows:

1
d2hkl
=

1
a2
(h2 + k2 + l2)
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here a is the lattice parameter and (hkl) is the given lattice plane. The calculated value of lattice
parameters of the fabricated NPs for Rh–Pd and Rh–Pt are 3.846 Å and 3.867 Å, respectively.
The lattice parameters obtained from diffraction peaks of (111) plane for Rh–Pd and Rh–Pt lies
in the range of pure Rh (a= 3.797 Å), Pd (3.889 Å), and Pt (3.918 Å) [24]

3.2. Nonlinear absorption of Rh–Pd and, Rh–Pt alloy NPs

To confirm the measurement of nonlinear absorption, the as-synthesized Rh–Pd and Rh–Pt
colloids were filled in a glass cell with an inner optical path length of 1 mm and the OA z-scan
experiments were performed using 800 nm laser pulses (Fig. 1). Figure 5 shows the normalized
transmittance as a function of position of the sample in the open aperture z-scan experiment
for the peak intensity at the focus of 1.08 × 1012 W cm−2. The obtained curves for (a) Rh–Pd
and (b) Rh–Pd NPs indicated that when the sample was far from the focal point of the lens
the laser radiation intensity was low and the normalized transmission was close to unity. On
the other hand, as the sample was moved closer to the focal point, the transmission decreased
monotonically and reached a minimum at the focal point. The presence of a minimum in OA
z-scan curves for Rh–Pd and Rh–Pt NPs revealed the existence of the RSA. The above-mentioned
phenomenon is mainly caused by so-called TPA [4]. The origin of TPA can be explained as
follows. For metal NPs, only the electrons with the energy close to the Fermi level can absorb the
photons of visible and near infrared light [4]. For both interband and intraband transitions, when
an electron in the ground state absorbs two photons simultaneously and is excited to an upper
state, this process is called TPA and leads to RSA. In contrast, an electron in the ground state
absorbs one photon, which is called single photon absorption and leads to SA. According to the
spectrum in Fig. 2(a), the wavelength of the used laser lies in the non-resonant regime for both of
Rh–Pd and Rh–Pt alloy NPs. Therefore, the local field enhancement was not due to the SPR
wavelength. Ganeev et al. [20] performed a z-scan experiment of Pd NPs with 120 fs and 210 ps
laser pulses at the wavelength of 792 nm, however, they did not find SA even if the irradiation
intensity is sufficiently low. A succeeding experiment with 28 ns pulse at a wavelength of 532
nm resulted in a similar conclusion [28].

Fig. 5. OA z-scan experimental (closed circles) data and theoretical fittings (solid lines) of
(a) Rh–Pd and (b) Rh–Pt NPs.

The normalized transmittance, T(z), for OA z-scan experiment can be expressed by [27]

T(z) =
∑∞

m=0

[−q0(z, 0)]m

(m + 1)
3
/2

, (1)

where, q0 is defined as q0(z, 0) = βI0Leff
/
(1 + z2

/
z02), I0 = 2Pin

/
πω0

2 is the peak intensity
at the focus of z-scan experiment and Leff is the effective thickness of the sample deduced by
Leff = (1 − e−α0L)

/
α0, where, L is the sample length, z is the position of a sample and z0 is
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the Rayleigh length of the beam. The nonlinear absorption coefficient β is obtained by fitting
the experimental data with Eq. (1). In Fig. 5, the dotted and sold lines were the normalized
transmittance and the theoretical fitting of the experimental curve, respectively. As a result,
the nonlinear absorption coefficients for Rh–Pd and Rh–Pt were obtained to be 1.63 × 10−12

mW−1and 4.39 × 10−12 mW−1, respectively.

3.3. Nonlinear refraction of Rh–Pd and, Rh–Pt alloy NPs

The CA normalized transmittance of Rh–Pd and Rh–Pt NPs are shown in Fig. 6. The peak
intensity at the focus of the CA z-scan was 1.08 × 1012 Wcm−2 for both the Rh–Pd and Rh–Pt
NPs.

Fig. 6. Experimental data (closed circles) and theoretical fits (solid lines) for CA scheme of
the colloidal suspensions of (a) Rh–Pd and (b) Rh–Pt NPs synthesized through laser-induced
nucleation method.

It was reported that a prefocal transmittance maximum (peak) followed by a postfocal
transmittance minimum (valley) is the signature of negative nonlinear refraction. In contrast,
an opposite valley-peak configuration is attributed to positive nonlinear refraction [27]. Hence,
the valley to peak shape observed in Fig. 6 indicates that the Rh–Pd and Rh–Pd NPs possess
positive nonlinear refraction at 800 nm. To calculate a nonlinear refractive index, the normalized
transmittance for the CA z-scan experiment T(z) was fitted to the following equation [29],

T(z) = 1 +
4x

(x2 + 9)(x2 + 1)
∆Φ −

4(x2 + 3)
(x2 + 9)(x2 + 1)

∆Ψ, (2)

where x = z/z0 is the relative position from the beam waist, and ∆Φ and ∆Ψ are the nonlinear
phase shifts due to nonlinear refraction and absorption related with

∆Φ = kγI0Leff , (3)

∆Ψ = βI0Leff
/
2. (4)

In Eqs. (3) and (4), I0 is the peak intensity at focus and Leff is the effective thickness of the
sample as formulated in the OA technique. By introducing the relation ρ = β/2kγ, we can get
the relation between ∆Φ and ∆Ψ from Eqs. (3) and (4) as follows,

∆Ψ = ρ∆Φ. (5)

In that case, Eq. (2) can be written as

T(z) = 1 +
2(−ρx2 + 2x − 3ρ)
(x2 + 9)(x2 + 1)

∆Φ. (6)

The nonlinear refractive index (γ) of the samples was obtained by fitting the normalized
transmittances to Eq. (6). The solid curves in Fig. 6 are the best theoretical fits to the experimental
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data. The values of nonlinear refractive index are tabulated in Table 1. It is seen that the value of
γ for Rh–Pd and Rh–Pt are 1.10 × 10−16 and 1.17 × 10−16 cm2W−1, respectively. The positive
values indicate the self-focusing arising from the Kerr effect of the Rh–Pd and Rh–Pt NPs.
Ganeev et al. also reported positive nonlinearity of the Pd NPs using 120 fs pulse [22]. However,
G. Fan et al. reported negative nonlinearity of the Pd NPs using 4 ns pulse [4].

Table 1. Nonlinear optical parameters measured at 800 nm of colloidal suspension of Rh–Pd and
Rh–Pt NPs.

Estimated parameters Sample

Rh–Pd Rh–Pt

β (10−12 cm/W) 1.63 4.39

γ (10−16 cm2/W) 1.10 1.17

Reχ(3) (10−12 esu) 1.51 1.61

Imχ(3) (10−11 esu) 1.43 3.85

χ(3) (10−11 esu) 1.44 3.85

The absolute value of third order nonlinear refractive index is calculated by [30]

|χ(3) | = [(Re χ(3))2 + (Im χ(3))
2
]1/ 2, (7)

where Re χ(3)(esu) = 10−4 ε0c
2n02
π γcχr(3) (cm2 W−1), Imχ(3)(esu) = 10−2 ε0c

2n02λ
4π2 β (cm2 W−1),

c is the velocity of light in vacuum and ε0 is the vacuum permittivity. The values of third order
nonlinear susceptibility are shown in Table 1.

The values of χ(3) are 1.44 × 10−11 and 3.85 × 10−11 esu for the Rh–Pd NPs and Rh–Pt NPs,
respectively. χ(3) of the Rh–Pt NPs is larger than that of the Rh–Pd NPs. Moreover, it is also
larger than the Pt nonlinear susceptibility reported for Nd: YAG laser at a wavelength of 1064
nm [28], which can be attributed to the creation of hot electrons excited by femtosecond laser
pulse [31].

The metal NPs were have been known to exhibit strong nonlinear response due to the surface
plasmon resonance (SPR), which enhanced the local electric field near the NPs [32–36]. However,
for the Rh–Pd and Rh–Pt alloy NPs, the SPR peaks were respectively observed at 270 nm and 250
nm (Fig. 2), which were close to 330, 225 and 215 nm for pure Rh, Pd and Pt NPs, respectively
[37–39]. Because the wavelength of the laser (800 nm) is far from the SPR wavelengths, the
contribution of SPR to the nonlinear response of the Rh–Pd and Rh–Pt NPs would be negligible.
The optical properties of noble metals such as Rh, Pd and Pt are influenced by the localized

outermost electrons in the d band and the quasi-free-electrons in the s–p conduction band. The d
band lies in the range of 2.0 to 5.0 eV below the Fermi level and is flat for almost all wave vectors
k [40]. Because of their relatively large effective mass, the d electrons are weakly affected by
the confining potential resulting in marginal contribution to the optical transition probability. In
contrast, the s–p band is extremely uneven in the k space and the effective mass of an electron is
very close to that of a free electron [40]. According to the band structures of Rh, Pd and Pt, the
transition can only take place around the L point of the Brillouin zone [41], which includes the
intraband transition in the conduction band and the interband transition between the d band and
the conduction band. The energy band structures of Rh, Pt and Pd are similar with each other
[42]. Anderson has studied the energy band structures of Rh, Pt and Pd around the L point of the
Brillouin zone. He found that the d bandwidth of Pd was smaller than those of Rh and Pt and
the insertion of s–p band into d band for Rh and Pt is stronger than Pd [43]. Therefore, around
the L point of the Brillouin zone, the interval between d band and s–p band of Rh–Pt NPs is
presumed to be smaller than that of Rh–Pd NPs. Accordingly, it can be expected that the interval
between occupied and unoccupied DOS curves of Rh–Pt NPs is also smaller than that of Rh–Pd
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NPs. This is because that the value of occupied and unoccupied DOS of Pt NPs is significantly
just below and above the Fermi level [44,45]. Hence, the small interval between the occupied
and unoccupied DOS curves can lead to stronger nonlinear absorption i.e. RSA for Rh–Pt than
Rh–Pd NPs as observed in Fig. 5.

The average lifetime of the excited electrons in Pd NPs has been reported to be 6 fs [46]. Thus,
the electrons in the d band and the s–p conduction band can be sufficiently excited if the exciting
laser pulse duration is longer than the lifetime regardless of the wavelength. For metal NPs with
a mean diameter of nearly 10 nm, the intraband transition is strongly size dependent [3] and
the contribution to SA is negative [47] or very small [48]. However, in the Rh–Pd and Rh–Pt
NPs, SA was not observed. Thus, when the Rh–Pd and Rh–Pt NPs are excited by femtosecond
laser pulses, the absorbed energy promotes intraband as well as interband transition between the
d band and s–p band. Therefore, it is reasonable to consider that the intraband and interband
transition between the d band and the s–p conduction band contribute to the RSA. Moreover,
TPA has more occupied DOS in the ground state and more unoccupied DOS in excited state,
then TPA takes place naturally and dominates the interband absorption when the intensity is high
[5]. Further, at high intensity, the hot electrons excited by laser pulses through the intraband
absorption in the conduction band and the multiphoton absorption between the d band and the
conduction band can be further excited to a higher excited state in the conduction band, which is
so-called excited state absorption (ESA) or free carrier absorption. Therefore, several phenomena
such as interband transition, TPA and the participation of transient absorption of free carriers in
the nonlinear absorption may surely affect the RSA.
There are two sources of nonlinear refraction, namely, electronic mechanism and thermal

effect [27,46]. In this study, the thermal contribution was minimized by properly choosing the
pulse duration and repetition rate of an excitation laser. The buildup time of thermal effect in
aqueous solution is about 30 ns [49], which is much longer than the laser pulse duration (100
fs) used in this experiment. Besides, the repetition rate of the laser was 100 Hz, which is low
enough to exclude the thermal effect. On the other hand, Hamanaka et al. proposed a model for
explaining the nonlinear refraction of Ag NPs excited by femtosecond laser based on the creation
of hot electrons [31]. According to this model, hot electrons are created when the excitation
wavelength is far from the SPR wavelength. Hence the contribution from hot electrons due to
TPA may play an important role for the Rh-Pd and Rh-Pt NPs because their SPR is far below the
excitation wavelength of the employed femtosecond pulses.

4. Conclusions

In summary, a study of the third order nonlinear optical properties of the Rh–Pd and Rh–Pt alloy
NPs was performed to evaluate the contribution to the nonlinear response of the addition of
Pd and Pt to Rh. RSA arose from the free carriers generated by TPA. The positive nonlinear
refraction of the Rh–Pd and Rh–Pt NPs was attributed to the optical Kerr effect.
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