S. Samukawa, K. Sakamoto, and K. Ichiki, High-efficiency low energy neutral beam generation using negative ions in pulsed plasma Japan, J. Appl.Phys. Part, vol.2, pp.40-997, 2001.

C. Thomas, Y. Tamura, T. Okada, A. Higo, and S. Samukawa, Estimation of activation energy and surface reaction mechanism of chlorine neutral beam etching of GaAs for nanostructure fabrication, Journal of Physics D: Applied Physics, vol.47, p.275201, 2014.

C. Thomas, Y. Tamura, M. Syazwan, A. Higo, and S. Samukawa, Oxidation states of GaAs surface and their effects on neutral beam etching during nanopillar fabrication, J. Phys. D-Appl. Phys, vol.47, p.215203, 2014.

M. Draghici and E. Stamate, Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6, J. Appl. Phys, vol.107, p.123304, 2010.

O. Vozniy and G. Yeom, High-energy negative ion beam obtained from pulsed inductively coupled plasma for charge-free etching process, Appl. Phys. Lett, vol.94, p.231502, 2009.

D. Marinov, M. El-otell, N. Bowden, J. St, and . Braithwaite, Plasma Sources Science and Technology, vol.24, issue.6, 2015.

U. Fantz, P. Franzen, and D. Wünderlich, Development of negative hydrogen ion sources for fusion: experiments and modelling, Chem. Phys, vol.398, pp.7-16, 2012.

L. Schiesko, P. Mcneely, U. Fantz, P. Franzen, and N. Team, Caesium influence on plasma parameters and source performance during conditioning of the prototype ITER neutral beam injector negative ion source Plasma Physics and Controlled Fusion, vol.53, p.85029, 2011.

A. Aanesland, D. Rafalskyi, J. Bredin, P. Grondein, N. Oudini et al., The PEGASES Gridded Ion-Ion Thruster Performance and Predictions IEEE Transactions on Plasma Science, vol.43, pp.321-327, 2015.

T. Lafleur, D. Rafalskyi, and A. Aanesland, Alternate extraction and acceleration of positive and negative ions from a gridded plasma source, Plasma Sources Sci. Technol, vol.24, p.15005, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01104903

D. Renaud, D. Gerst, S. Mazouffre, and A. Aanesland, E × B probe measurements in molecular and electronegative plasmas, Rev. Sci. Instrum, vol.86, p.123507, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01549366

A. Ueno, Interesting experimental results in japan proton accelerator research complex H ion-source development (invited), Rev. Sci. Instrum, vol.81, pp.2-720, 2010.

D. Moehs, J. Peters, and J. Sherman, Negative hydrogen ion sources for accelerators, IEEE Trans. Plasma Sci, vol.33, pp.1786-98, 2005.

J. Lettry, D. Aguglia, P. Andersson, S. Bertolo, A. Butterworth et al., Review of Scientific Instruments, vol.85, pp.2-122, 2014.

M. Bacal and M. Wada, Negative hydrogen ion production mechanisms, Applied Physics Reviews, vol.2, p.21305, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01551658

S. Be?chu, A. Soum-glaude, A. Be?s, A. Lacoste, P. Svarnas et al., Multidipolar microwave plasmas and their application to negative ion production, Physics of Plasmas, vol.20, p.101601, 2013.

J. Komppula, O. Tarvainen, S. Lätti, T. Kalvas, H. Koivisto et al., VUVdiagnostics of a filament-driven arc discharge H? ion source, AIP Conference Proceedings, vol.1515, pp.66-73, 2013.

T. Babkina, T. Gans, and U. Czarnetzki, Energy analysis of hyperthermal hydrogen atoms generated through surface neutralisation of ions, Europhys. Lett, vol.72, pp.235-276, 2005.

L. Schiesko, Plasma Sources Sci. Technol, vol.17, p.35023, 2008.

S. Mahieu and D. Depla, Correlation between electron and negative O[sup ?] ion emission during reactive sputtering of oxides, Applied Physics Letters, vol.90, p.121117, 2007.

H. Toyoda, K. Goto, T. Ishijima, T. Morita, N. Ohshima et al., Fine Structure of O -Kinetic Energy Distribution in RF Plasma and Its Formation Mechanism Applied Physics Express, vol.2, p.126001, 2009.

T. Ishijima, K. Goto, N. Ohshima, K. Kinoshita, and H. Toyoda, Spatial Variation of Negative Oxygen Ion Energy Distribution in RF Magnetron Plasma with Oxide, Target Japanese Journal of Applied Physics, vol.48, p.116004, 2009.

J. Andersson, E. Wallin, E. Mu?nger, and U. Helmersson, Energy distributions of positive and negative ions during magnetron sputtering of an Al target in Ar?O[sub 2] mixtures, Journal of Applied Physics, vol.100, p.33305, 2006.

. Heeren-r-m-a, Angular and energy distributions of surface produced H?and D?ions in a barium surface conversion source, J. Appl. Phys, vol.75, p.4340, 1994.

S. Mahieu, W. Leroy, K. Van-aeken, and D. Depla, Modeling the flux of high energy negative ions during reactive magnetron sputtering, Journal of Applied Physics, vol.106, p.93302, 2009.

N. Ito, N. Oka, Y. Sato, and Y. Shigesato, Effects of Energetic Ion Bombardment on Structural and Electrical Properties of Al-Doped ZnO Films Deposited by RF-Superimposed DC Magnetron Sputtering Jpn, J. Appl. Phys, vol.49, p.71103, 2010.

N. Britun, T. Minea, S. Konstantinidis, and R. Snyders, Plasma diagnostics for understanding the plasmasurface interaction in HiPIMS discharges: a, review Journal of Physics D: Applied Physics, vol.47, p.224001, 2014.

R. S. Hemsworth and T. Inoue, IEEE Trans. Plasma Sci, vol.33, issue.6, p.1799, 2005.

B. Heinemann, U. Fantz, P. Franzen, M. Froeschle, M. Kircher et al., Negative ion test facility ELISE-Status and first results Fusion Eng. Des, vol.88, pp.512-518, 2013.

U. Fantz, L. Schiesko, and D. Wuenderlich, Plasma expansion across a transverse magnetic field in a negative hydrogen ion source for fusion Plasma Sources Sci, Technol, vol.23, p.44002, 2014.

G. Fubiani and J. Boeuf, Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source-Insights from a three dimensional particle-in-cell Monte Carlo collisions model, Phys. Plasmas, vol.20, p.113511, 2013.

G. Fubiani and J. Boeuf, Plasma asymmetry due to the magnetic filter in fusion-type negative ion sources: Comparisons between two and three-dimensional particle-in-cell simulations, Phys. Plasmas, vol.21, p.73512, 2014.

S. Mochalskyy, D. Wuenderlich, U. Fantz, P. Franzen, and T. Minea, Towards a realistic 3D simulation of the extraction region in ITER NBI relevant ion source, Nucl. Fusion, vol.55, p.33011, 2015.

S. Mochalskyy, D. Wuenderlich, B. Ruf, U. Fantz, P. Franzen et al., On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source Plasma Phys. Control, Fusion, vol.56, p.105001, 2014.

V. Toigo, Progress in the realization of the PRIMA neutral beam test facility Nuclear Fusion, vol.55, 2015.

V. Antoni, P. Agostinetti, D. Aprile, M. Cavenago, G. Chitarin et al., Physics design of the injector source for ITER neutral beam injector, Review of Scientific Instruments, vol.85, pp.2-128, 2014.

K. Miyamoto, S. Okuda, S. Nishioka, and A. Hatayama, Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources, Journal of Applied Physics, vol.114, p.103302, 2013.

V. Dudnikov and R. Johnson, Cesiation in highly efficient surface plasma sources, Phys. Rev. ST Accel. Beams, vol.14, p.54801, 2011.

V. Dudnikov, SU patent application C1.H013/04, 1972.

V. Dudnikov, B. Han, R. P. Johnson, S. N. Murray, T. R. Pennisi et al., Surface Plasma Source Electrode Activation by Surface Impurities AIP Conference Proceedings, vol.1390, pp.411-421, 2011.

A. Simonin, J. Achard, K. Achkasov, S. Bechu, C. Baudouin et al., R&D around a photoneutralizer-based NBI system (Siphore) in view of a DEMO Tokamak steady state fusion reactor Nuclear Fusion, vol.55, p.123020, 2015.

L. Schiesko, G. Cartry, C. Hopf, T. Höschen, G. Meisl et al., First experiments with Cs doped Mo as surface converter for negative hydrogen ion sources, Journal of Applied Physics, vol.118, p.73303, 2015.

L. Schiesko, M. Carre?re, J. Layet, and G. Cartry, Negative ion surface production through sputtering in hydrogen plasma, Applied Physics Letters, vol.95, p.191502, 2009.

L. Schiesko, A comparative study of H-and D-production on graphite surfaces in H2 and D2 plasmas Plasma Sources Sci, vol.19, p.45016, 2010.

P. Kumar, Enhanced negative ion yields on diamond surfaces at elevated temperatures, J. Phys. D: Appl. Phys, vol.44, p.372002, 2011.

A. Ahmad, Negative-ion production on carbon materials in hydrogen plasma: influence of the carbon hybridization state and the hydrogen content on H ? yield, J. Phys. D: Appl. Phys, vol.47, p.85201, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00943265

A. Ahmad, Negative-ion surface production in hydrogen plasmas: modeling of negative-ion energy distribution functions and comparison with experiments, Plasma Sources Sci. Technol, vol.22, p.25006, 2013.

G. Cartry, Production of negative ions on graphite surface in H2/D2 plasmas: experiments and SRIM calculations, Phys. Plasmas, vol.19, p.63503, 2012.

U. Kurutz and U. Fantz, Investigations on caesium-free alternatives for H? formation at ion source relevant parameters, AIP Conf. Proc, vol.1655, p.20005, 2015.

A. Phelps, . H2-+, H. H3-+, H. , and H. , Cross Sections and Swarm Coefficients for, 51 SIMION website, vol.19, p.653, 1990.

J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM -the Stopping and Range of Ions in Matter, pp.0-9654207, 2008.

J. Van-wunnik, J. Geerlings, and J. Los, The velocity dependence of the negatively charged fraction of hydrogen scattered from cesiated tungsten surfaces, Surf. Sci, vol.131, p.1, 1983.

B. Rasser, Negative ionization of hydrogen on W and Cs, Surface Science, vol.118, pp.697-710, 1982.

H. Winter, Collisions of atoms and ions with surfaces under grazing incidence, Physics Reports, vol.367, pp.387-582, 2002.

B. Rasser, J. Van-wunnik, and J. Los, Theoretical models of the negative ionization of hydrogen on clean tungsten, cesiated tungsten and cesium surfaces at low energies, Surf. Sci, vol.118, pp.697-710, 1982.

O. Tarvainen, T. Kalvas, J. Komppula, H. Koivisto, E. Geros et al., Effect of Ion Escape Velocity and Conversion Surface Material on H? Production AIP Conference Proceedings, vol.1390, pp.113-122, 2011.