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Iron-sulfur (Fe e S) clusters are considered one of the most ancient and versatile inorganic cofactors
present in the three domains of life. Fe e S clusters can act as redox sensors or catalysts and are found to
be used by a large number of functional and structurally diverse proteins. Here, we cover current
knowledge of the SUF multiprotein machinery that synthesizes and inserts Fe
Speci c focus is put on the ABC ATPase SufC, which contributes to building Fe e S clusters, and appeared

e S clusters into proteins.

© 2019 Published by Elsevier Masson SAS on behalf of Institut Pasteur.

1. Introduction

P-loop ATPases are one of the most prevalent protein families in
the proteomes of organisms from all three domains of life. Phylo-
genetic analyses have suggested that the last universal common
ancestor (LUCA) of all modern organisms already possessed mul-
tiple P-loop NTPases [1]. In the present-day organisms, P-loop
NTPases are involved in a wide range of biological processes. P-loop
ATPases are chemo-mechanical engines that use both the binding
and the hydrolysis energy stored in adenosine triphosphate (ATP)
to overcome energetic barriers. Among the P-loop superfamily one
can distinguish the A_TP-Binding C assette (ABC) containing proteins.
Initially the ABC proteins were described as energizing the trans-
port across membranes of a wide array of solutes, from ions to
macromolecules. Accordingly, ABC domains are part of, or associate
with  membrane-spanning proteins to form channels, whose
opening and closing are regulated by cognates substrate binding
and ABC proteins [2,3]. Subsequently, a subset of ABC proteins was
found to be associated with a variety of non-transmembrane
transport processes, such as structural maintenance of chromo-
somes, which is essential for chromosome segregation/

* Corresponding author.
** Corresponding author.
E-mail addresses:py@imm.cnrs.fr (B. Py), fbarras@pasteur.fr (F. Barras).

https://doi.org/10.1016/j.resmic.2019.08.001
0923-2508/ © 2019 Published by Elsevier Masson SAS on behalf of Institut Pasteur.

condensation, and DNA repair [4]. Here, we present and discuss
current information on the SUF system in which, SufC, an ABC
ATPase has been associated early during evolution to ensure
biogenesis of iron-sulfur (Fe e S) clusters [5e 8].

2. Fee S clusters and their biogenesis

Fee S clusters are considered as ranking among the most ancient
and versatile inorganic cofactors used in the three domains of life
[6e 9]. They can act as redox sensors or catalysts and are found to be
used by a great number of proteins (over 150 in  Escherichia coli
[10]). Likewise, Fee S proteins participate to diverse biological
processes such as respiration, photosynthesis, metabolite biosyn-
thesis, central metabolism, gene regulation or DNA repair
[7,8,10,11].

Many types of Fee S clusters are found in nature but the most
common ones are the rhombic [2Fe e 2S] and cubic [4Fee 4S] types.
They are constituted by ferrous (Fe 2'D) or ferric (Fe 3b) iron and
sul de (52 ). In most cases, the thiolate from cysteine residues side
chain coordinates iron ions of the cluster but examples have been
reported wherein histidine (His), arginine (Arg), aspartate (Asp) or
tyrosine (Tyr) residues can help to stabilize the cluster [7].

Fee S clusters can be synthesized spontaneously in vitro with
inorganic iron and sulfur sources but in vivo, cells require large
multiprotein machineries such as SUF, NIF or ISC [12e 14]. In this
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review we will focus on the SUF system ( Fig. 1) which is composed
of (i) the ABC ATPase-containing complex constituted by the
SufBCD proteins, which represents the scaffold onto which Fe e S
clusters are transiently assembled, (ii) the two-component
cysteine desulfurase complex, SufSE, which mobilizes sulfur from
L-cysteine, and (iii) the carrier SufA that delivers Fe e S clusters to
target apo-proteins [5,15,16]. Recently, two additional Suf proteins
were uncovered in the Firmicutes: SufT, a Fee S cluster carrier pro-
tein, and SufU that can replace SufE as partner of the SufS cysteine
desulfurase [17e 19]. Strikingly, in most prokaryotes, genes encod-
ing the Suf components are found to be located in a genomic cluster
and variation in the number of genes and their relative order can
arise among species (Fig. 2).

The SUF system was initially discovered in E. colivia a mutation
in the sufD gene that prevents ferric siderophore utilization under
iron limiting conditions  [20]. Subsequently, the suf operon was
discovered as contributing to virulence of the plant pathogen
Erwinia chrysanthemi [21]. Spontaneous prototroph pseudo-rever-
tant of E. coli iscstrain were obtained, which contained mutation
upregulating suf operon expression [22]. Since these early studies,
the SUF system has been described in a wide array of organisms
including chloroplasts in plants  [23,24]. Initially, identi  cation of an
ABC ATPase in a Fe S biogenesis system was interpreted as an
indication that this system delivered clusters to membrane
embedded and/or periplasmic apo-proteins. This hypothesis was
however ruled out after subcellular fractionation and immuno-
blotting experiments, which showed that all three SufB, SufC and
SufD proteins are cytosolic [5].

3. Physiological role of the SUF system

The SUF system was rst described in E. coliand most of our
knowledge on it derives from studies using this model organism
[14]. Besides SUFE. coli possesses the ISC system, another addi-
tional Fee S cluster biogenesis system. Although they share some
paralogous components, the two systems are not mere duplications
of one another and appear to be examples of convergent evolution.
First, the scaffold proteins differ from one system to another, SufB
(see below) and IscU being structurally and phylogenetically un-
related. Secondly, the ATP-hydrolysing scaffold partners are
different. Indeed, the SUF system uses an ABC ATPase (i.e. SufC),
while the ISC system depends on ATP-using DnaK/J-like chaperones
(i.e. HscA and HscB)[13,25] . In E. coli SUF acts as a back-up system
when the ISC system is unable to sustain cellular Fe e S demand.
This occurs when Fee S clusters biogenesis is dif cult to achieve
such as under iron limitation, and in conditions that damage Fe e S

Fe-S cluster assembly

Two-components
cysteine desulfurase

L-cysteine P A4
X g
L-alanine N

Iron donor

T =

-SufE
(SufS-Sufu)

ge

SufB-SufC-SufD

clusters, such as in the presence of oxygen reactive species (ROS).
Consistently, suf mutants are hypersensitive to oxidative stress and
iron limitation [5,20,26e 28]. In E. coli the SUF system is also
required to cope with metallic stress such as cobalt exposure, which
poisons the Fee S cluster assembly process [29]. How the SUF
proteins succeed to function in conditions where the ISC does not is
not fully understood. The hypothesis that the SUF system is func-
tional under oxidative stress or iron limitation has received support
from biochemical and structural investigations  [30,31] . Biochemical
studies in particular showed that SufBCD-bound Fe e S clusters are
more stable in the presence of hydrogen peroxide as compared to
the IscU-bound cluster [30].

In E. coli switching from ISC to SUF bears drastic physiological
consequences (see [11] for a review on regulatory aspects). For
example, an E. coli strain using only SUF to make Fee S clusters
exhibits a lower aminoglycoside uptake capacity, hence enhanced
resistance to this class of antibiotics [32]. Indeed, aminoglycoside
uptake is reduced because proton motive force-producing respi-
ratory complexes that contains Fe e S are much less ef ciently
matured by the SUF machinery than the ISC machinery. Similarly, a
recent study reported a reduced maturation of the major oxidore-
ductases in anaerobic growing isc mutants of E. coli[33].

The SUF machinery has been proven to be essential for viability
in organisms that do not contain ISC or NIF systems, such as
Mycobacterium tuberculosis, Bacillus subtilis, Synechocystis and
Staphylococcus aureus[17,34e 36]. Accordingly the suf genes are
part of the B. subtilis strain engineered to contain a minimal
genome [37].

4. Biochemistry of the SufBCD scaffold complex and its
components

4.1. The SufB scaffold

SufB is able to assemble transiently a Fee S cluster. The type of
cluster however remains uncertain as in vitro reconstitution ex-
periments reported the production of both a [2Fe e2S] and a
[4Fee 4S] containing SufB [30,38]. In vivo, both [4Fee4S] and
[3Fee 4S] clusters-containing SufB have been identi ed [39]. As
described below, SufB interacts with SufCD to yield a complex,
which in its isolated form at an early stage of the puri cation ex-
hibits a blackish-green colour and a typical [2Fe e 2S] UVe visible
spectrum [40]. However, the colour vanishes gradually during pu-
ri cation, because the Fee S cluster is fragile in presence of oxygen
[40]. Importantly, in vitro, both the [2Fee 2S] and [4Fee 4S] holo-
forms of SufB are able to transfer their cluster to [2Fe e 2S] and

Fe-S cluster delivery

Carrier Target

) 658 6

(SufT)

Fig. 1. General principles of the SUF Fee S cluster biogenesis. The Fee S cluster assembles on a scaffold protein (SufBC,D complex), which receives sulfur from a two-component

cysteine desulfurase (SUfSE or SufSU) and iron from an as yet non-identi
which delivers it to the  nal apotarget.

ed source. Then, the pre-formed Fee S cluster is transferred to a carrier protein (SufA and/or SufT),
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Fig. 2. Schematic representation of the suflocus in bacterial and archaeal species.

[4Fee 4S] client proteins [41e43]. The N-terminal region of SufB
contains a putative Fe e S cluster motif (CxxCxxxC) that was pro-
posed to provide the ligands of the Fe e S cluster [38], but such a
prediction was ruled out by in vivo mutagenesis analysis [44].
Moreover both in vivo and structural studies pointed to the
invariant Cys405 residue and Glu434, His433 and/or Glu432 resi-
dues as proposed Fee S ligands (Fig. 3A, B)[40,44]. Itis worth noting
that the only available structure of SufB (PDB: 5AWF) corresponds
to the form complexed with SufC and SufD (see below).

4.2. The SufC ABC ATPase

SufC exhibits signatures expected of ABC ATPases such as Walker
A and B motifs, D- and Q-loops and was found to possess ATPase
activity [5,21,45]. X-ray-solved crystal structures of Thermus ther-
mophilus and E. coli SufC are available (PDB accession numbers:
2D2F; 2D3W) (Fig. 3C)[46,47] . A catalytic a/b domain containing the
nucleotide-binding Walker A and B motifs, and a helical domain
containing an ABC signature motif are connected by a Q-loop that
contains a strictly conserved GIn residue (GIn85 in  E. coliSufC). SufC
presents differences with other ABC ATPase structures including a
displacement of the Q-loop, and a difference in the solvent exposed
surface, in particular the end of the Walker B motif  [46,47]. The
ATPase activity of SufC is signi cantly enhanced upon interaction
with SufB or SufD (180-fold with SufB and 5-fold with SufD)  [48,49].

4.3. The SufD component

In many organisms, SufB possesses a paralogue named SufD. In
E. coli SufB and SufD proteins share 17% identity and 37% similarity in
protein primary sequence. However, SufD differs markedly from SufB
as no Fee S cluster was found associated with it. Early studies reported
a link between SufD and iron metabolism [5,20,39,50]. However,
invitro evidence for a Sufb/Fe? /3P interaction is still lacking.

The structure of E. coli SufD has been resolved (PDB number:
1VH4) [51] and displays an atypical fold. It is a attened right-
handed b-helix of nine turns with two strands per turn. SufD can
form homodimers, which yields to a doubling of the  b-helix length
(to 80 A). Two highly conserved residues, Pro347 and His360,
interact at the dimer interface ( Fig. 3B) [51]. Interestingly, highly
conserved residues are also found in SufB sequence such as Tyr374,
Arg378, Gly379, Ala385 or Phe393, but their role remains unknown.

4.4. The SufgD, complex

SufC and SufD interact forming a SufC,D, complex whose stoi-
chiometry was determined by mass spectrometry and light

scattering experiments [48,52]. Although the physiological signi -
cance of this complex is still unclear, as SufB is required for Fe e S
cluster biogenesis, the information derived from the SufC D,
complex might be of interest to understand how the SUF machinery
works. The structure of the complex notably revealed that SufC and
SufD interact through extensive hydrophobic interactions as well as
by eight hydrogen bonds and one salt-bridge (PDB: 2ZU0) [52].
Interaction involves, on the SufD side, a series of hydrophobic
residues that are conserved in SufD, but also in SufB, and, on the
SufC side, the b6 strand, the a2 and a3 helices and the Q-loop. No
structural changes were found when comparing SufD alone and
SufD in the SufC,D, complex. In contrast, signi cant structural
changes occurred in SufC, especially near the catalytic site, which
undergoes conformational modi cations such as breaking-off of
the salt bridge connecting Lys152 and the Glul71 residue of the
Walker B motif whose side chain now faces the ATP-binding pocket
[52] (Fig. 3D). Also, His203, another key residue for the activity of
ABC ATPases, is shifted of approximately 5 A toward Glul71. These
conformational changes ensue a better ATP binding and hydrolysis
and provide a rationale as to why SufC ATPase activity is boosted
upon interaction with SufD  [48,49].

4.5. The SufBeD complex

In E. coli the physiologically relevant scaffolding complex is the
ternary SufBC,D complex with a 1:2:1 stoichiometry as indicated
by mass spectrometry analysis and biochemical analyses [41].
Interestingly, the SufBC,D complex can be obtained in vivo in
strains expressing the entire suf operon, but cannot be recon-
stituted in vitro starting from the puri  ed components. Neverthe-
less, it remains to be investigated whether thisre  ects some sort of
cotranslational folding/assembly constraint. The structure of the
E. coli SUtBBGD complex was solved at 2.95 A resolution (PDB:
5AWF) (Fig. 3A) [40]. One SufC subunit binds SufB and the other
binds SufD, while the ATP-binding motifs of each subunit face each
other. Contrary to most ABC ATPases, the SufC subunits are widely
separated (>40 A). SufB and SufD share a similar structural orga-
nization, with an N-terminal helical domain, a core domain con-
sisting of a right-handed parallel b-helix, and a C-terminal helical
domain that contains the SufC binding site. SufC binds both of its
partners and same structural changes are observed for SufC as in
SufGD, complex ( Fig. 3D). The association between SufC and SufB/
SufD is made via the so-called “transmission interface ” mode
observed in ABC transporters [53]. This mode was proposed to
allow transmission of the motion of the ABC ATPase to the trans-
membrane domain during ATP binding and hydrolysis  [53]. Overall,
this structural analysis indicates that the ATPase activity of SufC
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Fig. 3. Structure of the E. coliSufBCD components. A) Crystal structure of the E. coliSufBGD complex (SufB, orange; SufC, light green; SufD, light blue) (PDB: 5AWF) [40]. B) Close up
of the SufBD interface with residues proposed to be involved in Fe e S cluster xation and discussed in the text (represented in red). C) Details of the SufC ABC ATPase (PDB: 2D3W,

[47]) that is composed of two domains: the catalytic alpha/beta domain (blue) and the alpha-helical domain (red). Important residues are represented in g

rey. D) Structural changes

of major residues in SufC between the form complexed with SufD (PDB: 2ZUO, chain C, in red) and SufC alone (PDB: 2D3W, chain A, in green).

drives the conformational change of its SufB-SufD partners ( Fig. 4)
[40]. Moreover, these structural studies show that, despite not
participating in a trans-membrane transport function, the ATP-
dependent conformational changes of the SufBCD complex are
similar to those arising within other ABC transporters.

Several important insights speci ¢ to Fee S biogenesis were ob-
tained by this structural study. The core domains of the SufB and
SufD subunits are arranged in a right-handed parallel b-helix which
upon interactions forms an atypical anti-parallel  b-sheet hetero-
dimeric structure ( Fig. 3A). This is different from the
transmembrane-constituting 12 helices found in classic ABC trans-
porters or the long coiled-coil arm that forms a V-shaped dimeric
molecule able to interact with DNA in ABC ATPases of the SMC family.
The b-helix architecture of the SufB-SufD protomers was proposed to
be speci c of the Fee S cluster biogenesis family of proteins [40].

Fluorescence labelling and cross-linking experiments, both used
to follow conformational changes, revealed that SufC forms a

transient head-to-tail dimer within the complex during the cata-

lytic step of ATP binding and hydrolysis [40]. Moreover, SufC
dimerization induces conformational changes in its two partners,
SufB and SufD. Notably in SufB, the Cys405 residue thought to be a
ligand for the Fe e S cluster becomes exposed at the surface [40]. Itis
likely that the conformational changes also allow His360 of SufD,
another candidate for the cluster coordination residue [52], to
locate close to Cys405 of SufB (Fig. 3B) [40] . Hence, ATP hydrolysis is
required to drive conformational changes in order to make scaffold
ligands accessible to build the Fe e S cluster.

5. Critical residues for the function of the SufBC
complex

»,D scaffold

Three strictly conserved amino acid residues of SufC, namely
Lys40 residue in the Walker A box, Glu171 in the Walker B box, and
His203 in the H-motif are considered essential for the SUF complex
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Fig. 4. Proposed mechanism of Fee S cluster synthesis by the SufBC,D complex. This model is adapted from Hirabayashi et al., 2015 [40]. First, SufC binds ATP which induces the
conformational changes of SufB and SufD (transmission interface). Then, Fe e S cluster is built at the interface of SufB and SufD using sulfur obtained from SufS/SufE. The Fe e S cluster
is released to SufA and nally, the ATP is hydrolysed, leading to the initial state of the complex.

functioning. In vitro complexes containing mutated variants at any
of these positions almost completely lack ATPase activity [40].
Based upon the blackish-green colour (assumed to reveal Fe e S
assembly on the SufBCD complex) of the harvested host cells
overproducing the SufBCD complex, in vivo analysis indicated that
SufB C405A and SufD H360A mutants were unable to bind clusters
whereas SufD C358A variant was. This supports the notion that
both SufB Cys405 and SufD His360 serve as liganding sites for
cluster binding but not SufD Cys358 [40]. Interestingly, SufBCD
complex containing SufC variants lacking ATPase activity (Lys40,
Glul71, His203 variants) failed to bind cluster supporting the
notion that SufBD conformational changes induced by the SufC
ATPase are indispensable for Fee S cluster formation [40].

6. Integration of the SufBCD scaffold in the Fe
pathway line

e S biogenesis

The scaffold SUfBCD sub-complex receives sulfur from the SufSE
heterodimeric cysteine desulfurase ( Fig. 4). The sulfur atom is
mobilized from the L-cysteine by the SufS cysteine desulfurase. SufS
is a pyridoxal 5 ®phosphate (PLP)-containing enzyme exhibiting a
dimeric aminotransferase V fold of the type Il [54,55]. Brie y, once
L-cysteine is bound, an external aldimine is formed with the lysine-
bound PLP (Lys226 in E. coliSufS). Then, after formation of a keta-
mine intermediate, a conserved active site cysteine (Cys364 in
E. coli SufS) attacks the cysteine sulfur, leading to CeS bond
breakage and generation of the SufS persul de (SufSyr) covalent
intermediate and L-alanine. A speci c feature of type Il enzymes is a
19-residue insertion that forms a b-hairpin motif [55e57]. The
hairpin from one SufS monomer reaches across the dimer interface
to interact with the active site on the adjacent monomer and is
thought to play a role in mediating interactions with the sulfur
acceptor SufE [58]. The SufE protein binds to SufS, activates SufS
activity and accepts the persul de (SufEpe) on its conserved
cysteine residue (Cys51 in E. coli SufE) [15,59]. From the SufSE
complex the sulfur is then transferred to the SufBCD complex [38].

The interaction between SufSE and the SufB scaffold complex oc-
curs only if SufC is present [38].

SufU is present in many Gram-positive bacteria such as
B. subtilis, S. aureus and in some Mycobacteria (M. tuberculosis)
(Fig. 2). Interestingly, the SUF pathway of the SufU-containing or-
ganisms often lacks SufE. SufU of B. subtilis interacts with SufS,
stimulates SufS activity and accepts the persul de on the conserved
cysteine (Cys41 in B. subtilis SufU) [17,19,56,60]. Despite the lack of
homology between SufU and SufE, their tertiary structure exhibited
analogous folding [17]. Interestingly, SufU exhibits additional
cysteine residues that form a zinc binding site with the sulfur
acceptor site and an additional aspartate residue (Cys66, Cys128,
Asp43 in B. subtilis SufU) [19,61]. The exact role of this site remains
to be determined. The interaction of SufU with the SufBCD complex
has not been documented.

SufBCD was found to deliver its bound cluster to SufA, a member
of the A-type Fe e S cluster carrier (ATC) family, including in E. coli
two other paralogs, ErpA and IscA [42,62]. SufA of E. coliwhen co-
expressed in vivo together with all Suf proteins, contains a [2Fe e 2S]
cluster after anaerobic puri  cation [16] . SufA can transfer its cluster
to a wide set of apo-proteins, including ferredoxin, which is a
[2Fee 2S] protein, and biotin synthase or aconitase, which are
[4Fee 4S] enzymes [16,42,43]. In contrast, SufA cannot transfer its
cluster to SufBCD, suggesting an unidirectional pathway for cluster
synthesis [42].

7. Taxonomic distribution of the SufBCD system

The SUF system is considered as the most widely distributed
Fee S biosynthesis system among prokaryotes [63]. We then
explored the taxonomic distribution of homologues of the ABC
ATPase SufC and of the two paralogues SufB and SufD in Bacteria
and Archaea. We used a combination of BLASTP and HMM pro les
search [64,65] on a database of 1990 complete proteomes of pro-
karyotes (March 2019, ftp:/ftp.ncbi.nlm.nih.gov/genomes/all/ ),
using the sequences of E. coli as a query (Fig. 5). Preliminary
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phylogenetic trees were inferred to separate properly the paralo-
gous SufB and SufD families, as well as the SufC family from other
ABC transporters (MAFFT and FastTree, [66,67]). The number of
copies per genome, the presence or absence in all proteomes of the
database, the relative position of the corresponding genes in the

genomes, and the size of sequences were taken into consideration
to identify the most likely orthologues of each family. In agreement
with previous analysis [63], the mapping of presence/absence ratio
of SufBCD homologues in different prokaryotic phyla/classes in-
dicates that the SUF system is widespread in both Archaea and

Fig. 5. Taxonomic distribution of SUfBCD in major phyla/classes of Bacteria and Archaea. The tree corresponds to the NCBI taxonomy ( https://www.ncbi.nim.nih.gov/taxonomy ). The
rst rank corresponds to the domain, the second to the phylum and the third one to the class. The number of proteomes possessing at least one copy of SufB, S ufC and SufD in each
taxa is represented by a shade of grey (black: 100% present, white: 100% absent). The number of proteomes by taxa is presented on the right.
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Bacteria, which may suggest an ancient evolutionary origin (  Fig. 5).
SufB and SufD being paralogues, they also probably emerged by an
ancient gene duplication. The majority of taxa possess Suf proteins
homologues at the exception of some of them such as Chlorobi,
Chrysiogenetes, Dictyoglomior half of the Euryarchaeota. Under a
parsimonious hypothesis, this most likely indicates that SUF system

is ancient and that absences in these taxa are the result of several
independent gene losses. Considering the Fee S synthesis as crucial
for most of living organisms, it is probable that these taxa present
other Fee S biosynthesis systems such as ISC. The general co-
occurrence of SufB, SufC and SufD suggests the presence of a
functional SUF system, and strengthens the link between its three
main components. Interestingly, SufD seems to be less present than
SufBC and SufC, which is in agreement with a previous analysis
[63].

The Fee S clusters biogenesis systems found in eukaryotes are
diverse in terms of nature, evolutionary origin and DNA coding the
corresponding genes. Contrary to mitochondria, which contain the
ISC machinery, some plastids and especially from red algae possess
a SUF system which derives from the cyanobacterial ancestor of
chloroplasts [22]. Some plants such as Arabidopsis thaliana possess
a SUF system encoded in the nuclear genome. Interestingly, the SUF
machinery has been recently found to be present in the nuclear
genome of some amitochondriate eukaryotes such as Mono-
cercomonoides exilis[68,69]. The authors suggest that the acquisi-
tion of the SUF system could be a prerequisite for the loss of
mitochondria [68]. The SUF system in such protists seems to orig-
inate from a horizontal gene transfer from prokaryotes but the
precise donor taxon remains elusive. Finally, the human protozoan
parasite Blastocystis has likely acquired its SUF system through
lateral gene transfer from an archaeon related to the Meth-
anomicrobiales, a lineage present in the human gastrointestinal
tract [70].

8. The SUF system as a putative anti-pathogen target

The SUF system has a strong potential as an antipathogen target.
Indeed, the SUF system is not present in humans and is the only
Fee S biogenesis pathway in some bacterial pathogens such as
S. aureusor M. tuberculosis [34,71]. Research of potential inhibitors
led to the identi cation of a polycyclic molecule that targets
directly S. aureusSufC with good af nity [72]. Moreover, in vivo
tests lend credence to the potential use of this compound as an
antibacterial drug.

Some parasites such as Toxoplasma gondii the protozoan para-
site responsible for toxoplasmosis, and Plasmodium falciparum, the
infectious agent of malaria rely exclusively on the SUF pathway
[73]. Both belong to the Apicomplexa, whose members contain a
membrane-bound organelle called apicoplast. The apicoplast is
derived from a former plastid and contains four major prokaryote-
like metabolic pathways, including the SUF pathway, the non-
mevalonate (MEP) isoprenoid, the Il fatty-acid (FAS 1), and the
heme biosynthesis pathways [74]. Interestingly, only the SufB/
ORF470/Ycf24 gene has been retained in the apicoplast genome and
most of the enzymes involved in the SUF pathway as well as the
target proteins are encoded by the parasite's nuclear genome and
transported to the apicoplast. In  P. falciparum, the substitution of a
conserved Lys by Ala (K140A) in sufCsequence has been shown to
be toxic for the cell and led to the loss of apicoplast [75]. Hence the
SUF pathway appears essential for apicoplast maintenance and
parasite survival [75]. Similar observations were reported for
Plasmodium bergheij for which SufC, SufD, SufE and SufS have been
proven to be essential for cell survival but also during blood
infection [76]. The research of inhibitors of SUF system of
P. falciparum led to the identi cation of the b-cycloserine that

inhibits, in vitro, the activity of cysteine desulfurase SufSE [77].
Furthermore, b-cycloserine was shown to inhibit the blood stage
growth of P. falciparum, but whether it is caused by SufS inhibition
was not demonstrated [77]. Altogether, these studies indicated that
targeting the Plasmodium SUF machinery might be a promising
way to  ght against malaria.

9. Conclusion

The emergence of protein complexes to make use of Fe eS
clusters in biological processes was likely an early event during
evolution. As a matter of fact, at least three such systems arose, NIF,
ISC and SUF, which, despite the fact that they share some related
components, are more than mere duplications of one another. It is
reasonable to hypothesize that these machineries possibly evolved
from a common pool of components several times independently
to meet with the same goal, i.e. the synthesis of Fee S clusters.
Interestingly, both ISC and SUF uses general ATP-using devices,
Hsp70/Hsp40 and ABC ATPase, which subsequently specialized
toward collaborating exclusively with their respective components
of the Fee S biogenesis machineries.

The basic mechanism of Fee S cluster biogenesis is conserved
between SUF and ISC. It can be described as a two-step process in
which cluster transiently assembles on a scaffolding protein, and is
eventually delivered by dedicated carriers to apo-protein clients.
The ABC ATPase SufC, which is the main focus of the present review,
participates in the scaffolding activity by allowing binding and
formation of the cluster on SufB. Although much has been learned
from genetics, biophysics and structural studies, key questions
about the functioning of the SUF system remain. For instance, how
is the cluster built and where is it located? Available evidences
suggest it would position at the SufB/D interface, but this has to be
fully demonstrated. Although the source of sulfur is well docu-
mented, that of iron, if there is a dedicated one, remains unknown.
Evidences were provided that SufD could act as an entry point for
iron while early studies had pointed potential connection between
SUF and incoming ferric siderophore reductase [50], but much re-
mains to be done to establish the role of SufD in iron harvesting.
Evidently, a central question is the role of ATP in Fe eS cluster
building and/or in its release from the SufBCD complex. Among
other pending questions, an important one will be to decipher the
molecular determinants that make SUF seemingly ef cient under
adverse conditions (iron limitation and potentially damaging
oxidative stress). Finally, a reduced avin (FADH2) was found
associated to the as-isolated SufBC,D complex when puri  ed under
anaerobic conditions [41]. Studies on the role, if any, of this avinin
Fee S cluster biogenesis is eagerly awaited.

It is clear that both its absence in humans and its exclusive
presence in many pathogens make the SUF system an attractive
target for anti-pathogen compounds. In the context of increasing
paucity of ef cient antibiotics, targeting the SUF machineries of
Mycobacterium, S. aureusor P. falciparum might bear interesting
alternatives.
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