D. D. Leipe, Y. I. Wolf, E. V. Koonin, and L. Aravind, Classification and evolution of P-loop GTPases and related ATPases, J Mol Biol, vol.317, pp.41-72, 2002.

C. F. Higgins, ABC transporters: from microorganisms to man, Annu Rev Cell Biol, vol.8, pp.67-113, 1992.

I. B. Holland and M. A. Blight, ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans, J Mol Biol, vol.293, pp.381-99, 1999.

K. P. Hopfner, A. Karcher, D. S. Shin, L. Craig, L. M. Arthur et al., Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA doublestrand break repair and the ABC-ATPase superfamily, Cell, vol.101, pp.789-800, 2000.

L. Nachin, L. Loiseau, D. Expert, and F. Barras, SufC: an unorthodox cytoplasmic ABC/ ATPase required for [Fe-S] biogenesis under oxidative stress, EMBO J, vol.22, pp.427-464, 2003.

H. Beinert, Iron-sulfur proteins: ancient structures, still full of surprises, J Biol Inorg Chem, vol.5, pp.2-15, 2000.

M. Fontecave, Iron-sulfur clusters: ever-expanding roles, Nat Chem Biol, vol.2, pp.171-175, 2006.

R. Lill, Function and biogenesis of iron-sulphur proteins, Nature, vol.460, pp.831-839, 2009.

C. Andreini, A. Rosato, and L. Banci, The relationship between environmental dioxygen and iron-sulfur proteins explored at the genome level, PLoS One, vol.12, p.171279, 2017.

B. Py and F. Barras, Building Fe-S proteins: bacterial strategies, Nat Rev Microbiol, vol.8, pp.436-482, 2010.

E. L. Mettert and P. J. Kiley, Fe-S proteins that regulate gene expression, Biochim Biophys Acta, vol.1853, pp.1284-93, 2015.

R. Malkin and J. C. Rabinowitz, The reconstitution of clostridial ferredoxin, Biochem Biophys Res Commun, vol.23, pp.822-829, 1966.

B. Roche, L. Aussel, B. Ezraty, P. Mandin, B. Py et al., Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity, Biochim Biophys Acta, vol.1827, pp.455-69, 2013.

J. P-erard, O. De-choudens, and S. , Iron-sulfur clusters biogenesis by the SUF machinery: close to the molecular mechanism understanding, J Biol Inorg Chem, vol.23, pp.581-96, 2018.

L. Loiseau, S. Ollagnier-de-choudens, L. Nachin, M. Fontecave, and F. Barras, Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase, J Biol Chem, vol.278, pp.38352-38361, 2003.

V. Gupta, M. Sendra, S. G. Naik, H. K. Chahal, B. H. Huynh et al., Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe-2S] protein and acts as an Fe-S transporter to Fe-S target enzymes, J Am Chem Soc, vol.131, pp.6149-53, 2009.

A. G. Albrecht, D. Netz, M. Miethke, A. J. Pierik, O. Burghaus et al., SufU is an essential iron-sulfur cluster scaffold protein in Bacillus subtilis, J Bacteriol, vol.192, pp.1643-51, 2010.

A. A. Mashruwala and J. M. Boyd, Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron-sulfur proteins, Curr Genet, vol.64, pp.9-16, 2018.

B. P. Selbach, A. H. Chung, A. D. Scott, S. J. George, and S. P. Cramer, Dos Santos PC. Fe-S cluster biogenesis in Gram-positive bacteria: SufU is a zinc-dependent sulfur transfer protein, Biochemistry, vol.53, pp.152-60, 2014.

S. I. Patzer and K. Hantke, SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli, J Bacteriol, vol.181, pp.3307-3316, 1999.

L. Nachin, E. Hassouni, M. Loiseau, L. Expert, D. Barras et al., SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase, Mol Microbiol, vol.39, pp.960-72, 2001.

Y. Takahashi and U. Tokumoto, A third bacterial system for the assembly of ironsulfur clusters with homologs in archaea and plastids, J Biol Chem, vol.277, pp.28380-28383, 2002.

J. Przybyla-toscano, M. Roland, F. Gaymard, J. Couturier, and N. Rouhier, Roles and maturation of iron-sulfur proteins in plastids, J Biol Inorg Chem, vol.23, pp.545-66, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01690262

Y. Bai, T. Chen, T. Happe, Y. Lu, and A. Sawyer, Iron-sulphur cluster biogenesis via the SUF pathway, Metallomics, vol.10, pp.1038-52, 2018.

R. Dutkiewicz, M. Nowak, E. A. Craig, and J. Marszalek, Fe-S cluster Hsp70 chaperones: the ATPase cycle and protein interactions, Meth Enzymol, vol.595, pp.161-84, 2017.

F. W. Outten, O. Djaman, and G. Storz, A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli, Mol Microbiol, vol.52, pp.861-72, 2004.

S. Jang and J. A. Imlay, Hydrogen peroxide inactivates the Escherichia coli Isc ironsulphur assembly system, and OxyR induces the Suf system to compensate, Mol Microbiol, vol.78, pp.1448-67, 2010.

J. Lee, W. Yeo, and J. Roe, Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor, Mol Microbiol, vol.51, pp.1745-55, 2004.

J. Fantino, B. Py, M. Fontecave, and F. Barras, A genetic analysis of the response of Escherichia coli to cobalt stress, Environ Microbiol, vol.12, pp.2846-57, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01145017

B. Blanc, M. Cl-emancey, J. Latour, M. Fontecave, O. De-choudens et al., Molecular investigation of iron-sulfur cluster assembly scaffolds under stress, Biochemistry, vol.53, pp.7867-7876, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01801678

Y. Dai and F. W. Outten, The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU, FEBS (Fed Eur Biochem Soc) Lett, vol.586, pp.4016-4038, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00003579

B. Ezraty, A. Vergnes, M. Banzhaf, Y. Duverger, A. Huguenot et al., Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway, Science, vol.340, pp.1583-1590, 2013.

M. Jaroschinsky, C. Pinske, G. Sawers, and R. , Differential effects of isc operon mutations on the biosynthesis and activity of key anaerobic metalloenzymes in Escherichia coli, Microbiology (Reading, Engl), vol.163, pp.878-90, 2017.

G. Huet, M. Daff-e, and I. Saves, Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: evidence for its implication in the pathogen's survival, J Bacteriol, vol.187, pp.6137-6183, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078651

R. Balasubramanian, G. Shen, D. A. Bryant, and J. H. Golbeck, Regulatory roles for IscA and SufA in iron homeostasis and redox stress responses in the cyanobacterium Synechococcus sp. strain PCC 7002, J Bacteriol, vol.188, pp.3182-91, 2006.

C. A. Roberts, H. M. Al-tameemi, A. A. Mashruwala, Z. Rosario-cruz, U. Chauhan et al., The suf iron-sulfur cluster biosynthetic system is essential in Staphylococcus aureus, and decreased suf function results in global metabolic defects and reduced survival in human neutrophils, Infect Immun, vol.85, 2017.

D. R. Reuß, F. M. Commichau, J. Gundlach, B. Zhu, and J. Stülke, The blueprint of a minimal cell, MiniBacillus. Microbiol Mol Biol Rev, vol.80, pp.955-87, 2016.

G. Layer, S. A. Gaddam, C. N. Ayala-castro, S. Ollagnier-de-choudens, D. Lascoux et al., SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly, J Biol Chem, vol.282, pp.13342-50, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00374619

A. Saini, D. T. Mapolelo, H. K. Chahal, M. K. Johnson, and F. W. Outten, SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe-S cluster formation on SufB, Biochemistry, vol.49, pp.9402-9414, 2010.

K. Hirabayashi, E. Yuda, N. Tanaka, S. Katayama, K. Iwasaki et al., Functional dynamics revealed by the structure of the SufBCD complex, a novel ATP-binding cassette (ABC) protein that serves as a scaffold for iron-sulfur cluster biogenesis, J Biol Chem, vol.290, pp.29717-29748, 2015.

S. Wollers, G. Layer, R. Garcia-serres, L. Signor, M. Clemancey et al., Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor, J Biol Chem, vol.285, pp.23331-23372, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01053728

H. K. Chahal, Y. Dai, A. Saini, C. Ayala-castro, and F. W. Outten, The SufBCD FeÀS scaffold complex interacts with SufA for FeÀS cluster transfer, Biochemistry, vol.48, pp.10644-53, 2009.

H. K. Chahal and F. W. Outten, Separate FeS scaffold and carrier functions for SufB2C2 and SufA during in vitro maturation of [2Fe2S] Fdx, J Inorg Biochem, vol.116, pp.126-160, 2012.

E. Yuda, N. Tanaka, T. Fujishiro, N. Yokoyama, K. Hirabayashi et al., Mapping the key residues of SufB and SufD essential for biosynthesis of ironsulfur clusters, Sci Rep, vol.7, p.9387, 2017.

L. Schmitt and . Tamp-e-r, Structure and mechanism of ABC transporters, Curr Opin Struct Biol, vol.12, pp.754-60, 2002.

S. Watanabe, A. Kita, and K. Miki, Crystal structure of atypical cytoplasmic ABC-ATPase SufC from Thermus thermophilus HB8, J Mol Biol, vol.353, pp.1043-54, 2005.

S. Kitaoka, K. Wada, Y. Hasegawa, Y. Minami, K. Fukuyama et al., Crystal structure of Escherichia coli SufC, an ABC-type ATPase component of the SUF iron-sulfur cluster assembly machinery, FEBS (Fed Eur Biochem Soc) Lett, vol.580, pp.137-180, 2006.

A. Petrovic, C. T. Davis, K. Rangachari, B. Clough, W. Iain et al., Hydrodynamic characterization of the SufBC and SufCD complexes and their interaction with fluorescent adenosine nucleotides, Protein Sci, vol.17, pp.1264-74, 2008.

T. Tian, H. He, and X. Liu, The SufBCD protein complex is the scaffold for ironesulfur cluster assembly in Thermus thermophiles HB8, Biochem Biophysical Res Commun, vol.443, pp.376-81, 2014.

D. Expert, A. Boughammoura, and T. Franza, Siderophore-controlled iron assimilation in the enterobacterium Erwinia Chrysanthemi: evidence for the involvement OF bacterioferritin and the suf iron-sulfur cluster assembly machinery, J Biol Chem, vol.283, pp.36564-72, 2008.

J. Badger, J. M. Sauder, J. M. Adams, S. Antonysamy, K. Bain et al., Structural analysis of a set of proteins resulting from a bacterial genomics project, Proteins, vol.60, pp.787-96, 2005.

K. Wada, N. Sumi, R. Nagai, K. Iwasaki, T. Sato et al., Molecular dynamism of FeeS cluster biosynthesis implicated by the structure of the SufC2eSufD2 complex, J Mol Biol, vol.387, pp.245-58, 2009.

K. Hollenstein, R. Dawson, and K. P. Locher, Structure and mechanism of ABC transporter proteins, Curr Opin Struct Biol, vol.17, pp.412-420, 2007.

K. A. Black, D. Santos, and P. C. , Shared-intermediates in the biosynthesis of thiocofactors: mechanism and functions of cysteine desulfurases and sulfur acceptors, Biochim Biophys Acta, vol.1853, pp.1470-80, 2015.

H. Mihara and N. Esaki, Bacterial cysteine desulfurases: their function and mechanisms, Appl Microbiol Biotechnol, vol.60, pp.12-23, 2002.

B. Blauenburg, A. Mielcarek, F. Altegoer, C. D. Fage, U. Linne et al., Crystal structure of Bacillus subtilis cysteine desulfurase SufS and its dynamic interaction with frataxin and scaffold protein SufU, PLoS One, vol.11, p.158749, 2016.

B. Tirupati, J. L. Vey, C. L. Drennan, and J. M. Bollinger, Kinetic and structural characterization of Slr0077/SufS, the essential cysteine desulfurase from Synechocystis sp. PCC 6803, Biochemistry, vol.43, pp.12210-12219, 2004.

J. A. Dunkle, M. R. Bruno, F. W. Outten, and P. A. Frantom, Structural evidence for dimerinterface-driven regulation of the type II cysteine desulfurase, SufS. Biochemistry, vol.58, pp.687-96, 2019.

L. Loiseau, S. Ollagnier-de-choudens, D. Lascoux, E. Forest, M. Fontecave et al., Analysis of the heteromeric CsdA-CsdE cysteine desulfurase, assisting Fe-S cluster biogenesis in Escherichia coli, J Biol Chem, vol.280, pp.26760-26769, 2005.

B. Selbach, E. Earles, D. Santos, and P. C. , Kinetic analysis of the bisubstrate cysteine desulfurase SufS from Bacillus subtilis, Biochemistry, vol.49, pp.8794-802, 2010.

G. J. Kornhaber, D. Snyder, H. Moseley, and G. T. Montelione, Identification of zincligated cysteine residues based on 13Ca and 13Cb chemical shift data, J Biomol NMR, vol.34, pp.259-69, 2006.

D. Vinella, C. Brochier-armanet, L. Loiseau, E. Talla, and F. Barras, Iron-sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers, PLoS Genet, vol.5, p.1000497, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00698313

E. S. Boyd, K. M. Thomas, Y. Dai, J. M. Boyd, and F. W. Outten, Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway, Biochemistry, vol.53, pp.5834-5881, 2014.

S. F. Altschul, T. L. Madden, A. A. Sch?-affer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-402, 1997.

S. R. Eddy, A new generation of homology search tools based on probabilistic inference, Genome Inform, vol.23, pp.205-216, 2009.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol Biol Evol, vol.30, pp.772-80, 2013.

M. N. Price, P. S. Dehal, and A. P. Arkin, FastTree: computing large minimum evolution trees with profiles instead of a distance matrix, Mol Biol Evol, vol.26, pp.1641-50, 2009.

V. Vacek, L. Nov-ak, S. C. Treitli, P. Cepicka, I. Kolísko et al., Fe-S cluster Assembly in oxymonads and related protists, Mol Biol Evol, vol.35, pp.2712-2720, 2018.

A. Karnkowska, V. Vacek, Z. Zub-a-cov-a, S. C. Treitli, P. Zelkov-a-r et al., A eukaryote without a mitochondrial organelle, Curr Biol, vol.26, pp.1274-84, 2016.

A. D. Tsaousis, S. Ollagnier-de-choudens, E. Gentekaki, S. Long, D. Gaston et al., Evolution of Fe/S cluster biogenesis in the anaerobic parasite Blastocystis, Proc Natl Acad Sci, vol.109, pp.10426-10457, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01054372

A. A. Mashruwala, Y. Y. Pang, Z. Rosario-cruz, H. K. Chahal, M. A. Benson et al., Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus aureus, Mol Microbiol, vol.95, pp.383-409, 2015.

J. E. Choby, L. A. Mike, A. A. Mashruwala, B. F. Dutter, P. M. Dunman et al., A small-molecule inhibitor of iron-sulfur cluster Assembly uncovers a link between virulence regulation and metabolism in Staphylococcus aureus, Cell Chem Biol, vol.23, pp.1351-61, 2016.

Z. R. Pala, V. Saxena, G. S. Saggu, and S. Garg, Recent advances in the [Fe-S] cluster biogenesis (SUF) pathway functional in the apicoplast of Plasmodium, Trends Parasitol, vol.34, pp.800-809, 2018.

S. A. Ralph, G. G. Van-dooren, R. F. Waller, M. J. Crawford, M. J. Fraunholz et al., Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast, Nat Rev Microbiol, vol.2, pp.203-219, 2004.

J. E. Gisselberg, T. A. Dellibovi-ragheb, K. A. Matthews, G. Bosch, and S. T. Prigge, The suf iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites, PLoS Pathog, vol.9, p.1003655, 2013.

J. M. Haussig, K. Matuschewski, and T. Kooij, Identification of vital and dispensable sulfur utilization factors in the Plasmodium apicoplast, PLoS One, vol.9, p.89718, 2014.

M. Charan, N. Singh, B. Kumar, K. Srivastava, M. I. Siddiqi et al., Sulfur mobilization for Fe-S cluster Assembly by the essential SUF pathway in the Plasmodium falciparum apicoplast and its inhibition, Antimicrob Agents Chemother, vol.58, pp.3389-98, 2014.