M. Ueno and K. Itoh, The optimum condition to obtain the maximum hardenability effect of boron, Tetsu-to-Hagané, vol.74, pp.910-917, 1988.

X. L. He, Y. Y. Chu, and J. J. Jonas, Grain boundary segregation of boron during continuous cooling, Acta Metall, vol.37, issue.1, pp.147-161, 1989.

X. L. He, M. Djahazi, J. J. Jonas, and J. Jackman, The non-equilibrium segregation of boron during the recrystalization of Nb-treated HSLA steels, Acta Metall. Mater, vol.39, issue.10, pp.2295-2308, 1991.

T. Hara, H. Asahi, R. Uemori, and H. Tamehiro, Role of combined addition of niobium and boron and of molybdenum and boron on hardnenability in low carbon steels, ISIJ Int, vol.44, issue.8, pp.1431-1440, 2004.

D. J. Mun, E. J. Shin, K. C. Cho, J. S. Lee, and Y. M. Koo, Cooling rate dependence of boron distribution in low carbon steel, Metall. Mater. Trans. A, vol.43, issue.5, pp.1639-1648, 2012.

Y. J. Li, D. Ponge, P. Choi, and D. Raabe, Atomic scale investigation of non-equilibrium segregation of boron in a quenched mo-free martensitic steel, Proceedings of the 1st International Conference on Atom Probe Tomography and Microscopy, vol.159, pp.240-247, 2015.

Y. J. Li, D. Ponge, P. Choi, and D. Raabe, Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography, Scr. Mater, vol.96, pp.13-16, 2015.

K. Zhu, C. Oberbillig, C. Musik, D. Loison, and T. Iung, Effect of B and B + Nb on the bainitic transformation in low carbon steels, Mater. Sci. Eng. A, vol.528, issue.12, pp.4222-4231, 2011.

J. E. Morral and T. B. Cameron, A model for ferrite nucleation applied to boron hardenability, Metall. Trans. A, vol.8, issue.11, pp.1817-1819, 1977.

S. Yoshida, K. Ushioda, and J. Gren, Kinetic model of the ? to ? phase transformation at grain boundaries in boron-bearing low-alloy steel, ISIJ Int, vol.54, issue.3, pp.685-692, 2014.

R. G. Faulkner, Combined grain boundary equilibrium and non-equilibrium segregation in ferritic/martensitic steels, Acta Metall, vol.35, issue.12, pp.2905-2914, 1987.

X. L. He, Y. Y. Chu, and J. J. Jonas, Grain boundary segregation of boron during continuous cooling, Acta Metall, vol.37, pp.147-161, 1989.

D. Mclean, Grain Boundaries in Metals, 1957.

K. T. Aust, R. E. Hanneman, P. Niessen, and J. H. Westbrook, Solute induced hardening near grain boundaries in zone refined metals, Acta Metall, vol.16, issue.3, pp.291-302, 1968.

T. R. Anthony and R. E. Hanneman, Non-equilibrium segregation of impurities in quenched dilute alloys, Scr. Metall, vol.2, issue.11, pp.611-614, 1968.

X. Tingdong and C. Buyuan, Kinetics of non-equilibrium grain-boundary segregation, Prog. Mater. Sci, vol.49, issue.2, pp.109-208, 2004.

X. Tingdong, S. Shenhua, S. Huazhong, W. Gust, and Y. Zhexi, A method of determining the diffusion coefficient of vacancy-solute atom complexes during the segregation to grain boundaries, Acta Metall. Mater, vol.39, issue.12, pp.3119-3124, 1991.

H. Asahi, Effects of mo addition and austenitizing temperature on hardenability of low alloy B-added steels, ISIJ Int, vol.42, issue.10, pp.1150-1155, 2002.

B. Hwang, D. Suh, and S. Kim, Austenitizing temperature and hardenability of low-carbon boron steels, Scr. Mater, vol.64, issue.12, pp.1118-1120, 2011.

G. Shigesato, T. Fujishiro, and T. Hara, Grain boundary segregation behavior of boron in low-alloy steel, Metall. Mater. Trans. A, vol.45, issue.4, pp.1876-1882, 2014.

X. L. He, Y. Y. Chu, and J. J. Jonas, The grain boundary segregation of boron during isothermal holding, Acta Metall, vol.37, issue.11, pp.2905-2916, 1989.

N. Valle, J. Drillet, A. Pic, and H. Migeon, Nano-SIMS investigation of boron distribution in steels, Surf. Interface Anal, vol.43, issue.1-2, pp.573-575, 2011.

J. Drillet, N. Valle, and T. Iung, Nanometric scale investigation of phase transformations in advanced steels for automotive application, Metall. Mater. Trans. A, vol.43, issue.13, pp.947-951, 2012.

J. B. Seol, N. S. Lim, B. H. Lee, L. Renaud, and C. G. Park, Atom probe tomography and nano secondary ion mass spectroscopy investigation of the segregation of boron at austenite grain boundaries in 0.5 wt% carbon steels, Met. Mater. Int, vol.17, issue.3, pp.413-416, 2011.

F. Christien, C. Downing, K. L. Moore, and C. R. Grovenor, Quantification of grain boundary equilibrium segregation by nanosims analysis of bulk samples: how to quantify grain boundary segregation using nanosims, Surf. Interface Anal, vol.44, issue.3, pp.377-387, 2012.

J. Takahashi, K. Ishikawa, K. Kawakami, M. Fujioka, and N. Kubota, Atomic-scale study on segregation behavior at austenite grain boundaries in boron-and molybdenum-added steels, Acta Mater, vol.133, pp.41-54, 2017.

S. Watanabe, H. Ohtani, and T. Kunitake, The influence of hot rolling and heat treatments on the distribution of boron in steel, Tetsu-to-Hagané, vol.62, pp.1842-1850, 1976.

S. Watanabe, H. Ohtani, and T. Kunitake, The influence of dissolution and precipitation behavior of M23 (C, B)6 on the hardenability of boron steels, Trans. Iron Steel Inst. Jpn, vol.23, issue.2, pp.120-127, 1983.

H. Tamehiro, M. Murata, R. Habu, and M. Nagumo, Optimum microalloying of niobium and boron in hsla steel for thermomechanical processing, Trans. Iron Steel Inst. Jpn, vol.27, issue.2, pp.120-129, 1987.

F. Han, B. Hwang, D. Suh, Z. Wang, D. L. Lee et al., Effect of molybdenum and chromium on hardenability of low-carbon boron-added steels, Met. Mater. Int, vol.14, issue.6, pp.667-672, 2008.

L. Sangely, CHAPTER 15. secondary ion mass spectrometry, New Developments in Mass Spectrometry, pp.439-499, 2014.

H. W. Werner, Quantitative secondary ion mass spectrometry: a review, Surf. Interface Anal, vol.2, issue.2, pp.56-74, 1980.

B. W. Krakauer and D. N. Seidman, Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces, Phys. Rev. B, vol.48, issue.9, pp.6724-6727, 1993.

P. Maugis and K. Hoummada, A methodology for the measurement of the interfacial excess of solute at a grain boundary, Scr. Mater, vol.120, pp.90-93, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435243

P. Felfer, B. Scherrer, J. Demeulemeester, W. Vandervorst, and J. M. Cairney, Mapping interfacial excess in atom probe data, Proceedings of the 1st International Conference on Atom Probe Tomography and Microscopy, vol.159, pp.438-442, 2015.

Z. Peng, An automated computational approach for complete in-plane compositional interface analysis by atom probe tomography, pp.1-12, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02107351

H. Ohtani, M. Hasabe, and K. Ishida, Calculation of fe-c-b ternary phase diagram, Trans. Iron Steel Inst. Jpn, vol.28, pp.1043-1050, 1988.

X. P. Shen and R. Priestner, Effect of boron on the microstructure and tensile properties of dual-phase steel, Metall. Trans. A, vol.21, issue.9, pp.2547-2553, 1990.

C. Philippot, K. Hoummada, M. Dumont, J. Drillet, V. Hebert et al., Influence of a 2-D defect on the partitioning during the formation of a cementite particle in steels, Comput. Mater. Sci, vol.106, pp.64-68, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01774017

T. Fujishiro, T. Hara, and G. Shigesato, Effect of mo on ? to ? transformation and precipitation behavior in B-added steel, Tetsu-Hagane, vol.101, issue.5, pp.300-307, 2015.

P. E. Busby, M. E. Warga, and C. Wells, Diffusion and solubility of boron in iron and steel, JOM, vol.5, pp.1463-1468, 1953.

T. Heumann and H. Mehrer, Diffusion in Metallen, 1992.

A. Janotti, M. Kr-?mar, C. L. Fu, and R. C. Reed, Solute diffusion in metals: larger atoms can move faster, Phys. Rev. Lett, vol.92, 2004.

W. Wang, S. Zhang, and X. He, Diffusion of boron in alloys, Acta Metall. Mater, vol.43, issue.4, pp.1693-1699, 1995.

C. Wells, W. Batz, and R. F. Mehl, Diffusion coefficient of carbon in austenite, J. Met, vol.188, pp.553-560, 1950.

J. Dudala, J. Gilewicz-wolter, and Z. Stegowski, Simultaneous measurement of Cr, Mn and Fe diffusion in chromium-manganese steels, Nukleonika, vol.2, pp.67-71, 2005.

H. Grabke and E. M. Petersen, Diffusivity of nitrogen in iron-nickel alloys, Scr. Metall, vol.12, issue.12, pp.1111-1114, 1978.

F. S. Buffington, K. Hirano, and M. Cohen, Self diffusion in iron, Acta Metall, vol.9, issue.5, pp.434-439, 1961.

T. M. Williams, A. M. Stoneham, and D. R. Harries, The segregation of boron to grain boundaries in solution-treated type 316 austenitic stainless steel, Met. Sci, vol.10, issue.1, pp.14-19, 1976.

S. Brotzmann and H. Bracht, Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium, J. Appl. Phys, vol.103, issue.3, p.33508, 2008.

A. Portavoce, O. Abbes, Y. Rudzevich, L. Chow, V. L. Thanh et al., Manganese diffusion in monocrystalline germanium, Scr. Mater, vol.67, issue.3, pp.269-272, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02044885

I. Langmuir, THE adsorption of gases on plane surfaces of GLASS, mica and platinum, J. Am. Chem. Soc, vol.40, issue.9, pp.1361-1403, 1918.

P. Lejcek, Grain Boundary Segregation in Metals, Springer Series, p.136, 2010.

M. Gouné, F. Danoix, S. Allain, and O. Bouaziz, Unambiguous carbon partitioning from martensite to austenite in Fe-C-Ni alloys during quenching and partitioning, Scr. Mater, vol.68, issue.12, pp.1004-1007, 2013.

G. Da-rosa, P. Maugis, J. Drillet, V. Hebert, and K. Hoummada, Co-segregation of boron and carbon atoms at dislocations in steel, J. Alloys Compd, vol.724, pp.1143-1148, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01789218

Z. N. Abdellah, R. Chegroune, M. Keddam, B. Bouarour, L. Haddour et al., The phase stability in the fe-b binary system: comparison between the interstitial and substitutional models, vol.322, pp.1-9, 2012.

J. E. Morral and J. Jandeska, The binding energy of boron to austenite grain boundaries as calculated from autoradiography, Metall. Trans. A, vol.11, p.1628, 1980.

R. G. Faulkner, Non-equilibrium grain-boundary segregation in austenitic alloys, J. Mater. Sci, vol.16, pp.373-383, 1981.

G. Miyamoto, A. Goto, N. Takayama, and T. Furuhara, Three-dimensional atom probe analysis of boron segregation at austenite grain boundary in a low carbon steel -Effects of boundary misorientation and quenching temperature, Scr. Mater, vol.154, pp.168-171, 2018.