E. J. Van-damme, P. Rougé, and W. Peumans, J. Plant lectins. In Carbohydrate-Protein Interactions: Plant Lectins

J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi et al., , pp.564-599, 2007.

A. M. Wu, S. C. Song, M. S. Tsai, and A. Herp, A guide to the carbohydrate specificities of applied lectins-2, Adv. Exp. Med. Biol, vol.491, pp.551-585, 2001.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

D. Schutter, K. Van-damme, and E. J. , Protein-carbohydrate interactions as part of plant defense and animal immunity, Molecules, vol.20, pp.9029-9053, 2015.

E. J. Van-damme, N. Lannoo, E. Fouquaert, and W. J. Peumans, The identification of inducible cytoplasmic/ nuclear carbohydrate-binding proteins urges to develop novel concepts about the role of plant lectins, Glycoconj. J, vol.20, pp.449-460, 2004.

Y. Chen, W. J. Peumans, B. Hause, J. Bras, M. Kumar et al., Jasmonic acid methyl ester induces the synthesis of a cytoplasmic/nuclear chito-oligosaccharide binding lectin in tobacco leaves, FASEB J, vol.16, pp.905-907, 2002.

E. J. Van-damme, W. J. Peumans, A. Barre, and P. Rougé, Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles, Crit. Rev. Plant Sci, vol.17, pp.575-692, 1998.

B. B. Agrawal and I. J. Goldstein, Specific binding of concanavalin A to cross-linked dextran gels, Biochem. J, vol.96, pp.23-25, 1965.

R. S. Singh, R. Bhari, and H. P. Kaur, Mushroom lectins: Current status and future perspectives, Crit. Rev. Biotechnol, vol.30, pp.99-126, 2010.

S. Okuyama, S. Nakamura-tsuruta, H. Tateno, J. Hirabayashi, K. Matsubara et al., Strict binding specificity of small-sized lectins from the red alga Hypnea japonica for core (?1-6) fucosylated N-glycans, Biosci. Biotechnol. Biochem, vol.73, pp.912-920, 2009.

H. Debray and P. Rougé, The fine sugar specificity of the Lathyrus ochrus seed lectin and isolectins, FEBS Lett, vol.176, pp.120-124, 1984.

H. Tateno, S. Nakamura-tsuruta, and J. Hirabayashi, Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum sativum using frontal affinity chromatography, Glycobiology, vol.19, pp.527-536, 2009.

H. Tateno, H. C. Winter, J. Petryniak, and I. J. Goldstein, Purification, characterization, molecular cloning, and expression of novel members of jacalin

J. Smith, Polypodiaceae), J. Biol. Chem, vol.278, pp.10891-10899, 2003.

P. K. Datta, M. O. Figueroa, and F. M. Lajolo, Purification and characterization of two major lectins from Araucaria brasiliensis syn Araucaria angustifolia seeds (pinhao), Plant Physiol, vol.97, pp.856-862, 1991.

T. Miyakawa, K. Hatano, Y. Miyauchi, Y. Suwa, Y. Sawano et al., A secreted protein with plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity, Plant Physiol, vol.166, pp.766-778, 2014.

F. Yagi, T. Iwaya, T. Haraguchi, and I. J. Goldstein, The lectin from leaves of Japanese cycad, Cycas revoluta Thunb. (Gymnosperm) is a member of the jacalin-related family, Eur. J. Biochem, vol.269, pp.4335-4341, 2002.

M. Shimokawa, T. Haraguchi, Y. Minami, F. Yagi, K. Hiemori et al., Two carbohydrate recognizing domains from Cycas revoluta leaf lectin show the distinct sugar-binding specificity-A unique mannooligosaccharide recognition by N-terminal domain, J. Biochem, vol.160, pp.27-35, 2016.

T. Animashaun and R. C. Hughes, Bowringia milbraedii agglutinin. Specificity of binding to early processing intermediates of asparagine-linked oligosaccharide and use as a marker of endoplasmic reticulum glycoproteins, J. Biol. Chem, vol.264, pp.4657-4663, 1989.

S. Siddiqui, S. Hasan, and A. Salahuddin, Isolation and characterization of Cajanus cajan lectin, Arch. Biochem. Biophys, vol.319, pp.426-431, 1995.

C. Souza-teixeira, H. C. Da-silva, T. R. De-moura, F. N. Pereira-júnior, K. S. Do-nascimento et al., Crystal structure of the lectin of Camptosema pedicellatum: Implication of a conservative substitution at the hydrophobic subsite, J. Biochem, vol.152, pp.87-98, 2012.

G. A. Bezerra, R. Viertlmayr, T. R. Moura, P. Delatorre, B. A. Rocha et al., Structural studies of an anti-inflammatory lectin from Canavalia boliviana seeds in complex with dimannosides, PLoS ONE, vol.9, 2014.

B. S. Cavada, M. T. Silva, V. J. Osterne, V. R. Pinto-junior, A. P. Nascimento et al., Canavalia bonariensis lectin: Molecular bases of glycoconjugates interaction and antiglioma potential, Int. J. Biol. Macromol, vol.106, pp.369-378, 2018.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

J. Sanz-aparicio, J. Hermoso, T. B. Grangeiro, J. J. Calvete, and B. S. Cavada, The crystal structure of Canavalia brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from Concanavalin A, FEBS Lett, vol.405, pp.114-118, 1997.

B. B. Agrawal and I. J. Goldstein, Physical and chemical characterization of concanavalin A, the hemagglutinin from jack bean (Canavalia ensiformis), Bhiochim. Biophys. Acta, vol.133, pp.376-379, 1967.

K. Kojima, H. Ogawa, N. Seno, and I. Matsumoto, Purification and characterization of Canavalia gladiata agglutinin, Carbohydr. Res, vol.213, pp.275-282, 1991.

I. L. Barroso-neto, R. C. Simões, B. A. Rocha, M. J. Bezerra, F. N. Pereira-junior et al., Vasorelaxant activity of Canavalia grandiflora seed lectin: A structural analysis, Arch. Biochem. Biophys, vol.543, pp.31-39, 2014.

G. Perez, C. Perez, B. Sousa-cavada, R. Moreira, and M. Richardson, Comparison of the amino acid sequence of the lectins from seeds of Dioclea lehmanni and Canavalia maritima, Phytochemistry, vol.30, pp.2619-2621, 1991.

V. J. Osterne, J. C. Silva-filho, M. Q. Santiago, V. R. Pinto-junior, A. C. Almeida et al., Structural characterization of a lectin from Canavalia virosa seeds with inflammatory and cytotoxic activities, Int. J. Biol. Macromol, vol.94, pp.271-282, 2017.

M. A. Vasconcelos, A. C. Alves, R. F. Carneiro, A. H. Dias, F. W. Martins et al., Purification and primary structure of a novel mannose-specific lectin from Centrolobium microchaete Mart seeds, Int. J. Biol. Macromol, vol.81, pp.600-607, 2015.

A. C. Almeida, V. J. Osterne, M. Q. Santiago, V. R. Pinto-junior, J. C. Silva-filho et al., Structural analysis of Centrolobium tomentosum seed lectin with inflammatory activity, Arch. Biochem. Biophys, vol.596, pp.73-83, 2016.

E. J. Van-damme, A. Barre, V. Bemer, P. Rougé, F. Van-leuven et al., A lectin and a lectin-relared protein are the two most prominent proteins in the bark of yellow wood (Cladrastis lutea), Plant Mol. Biol, vol.29, pp.579-598, 1995.

D. Sol, F. G. Cavada, B. S. Calvete, and J. J. , Crystal structures of floribunda seed lectin at acidic and basic pHs. Insights into the structural basis of the pH-dependent dimer-tetramer transition, J. Struct. Biol, vol.158, pp.1-9, 2007.

N. Varejão, M. T. Correia, and D. Foguel, Chqaracterization of the unfolding process of the tetrameric and dimeric forms of Cratylia mollis seed lectin (CRAMOLL1): Effects of natural fragmentation on protein stability, Biochemistry, vol.50, pp.7330-7340, 2011.

B. A. Rocha, P. Delatorre, T. M. Oliveira, R. G. Benevides, A. F. Pires et al., Structural basis for noth pro-and anti-inflammatory response induced by mannose-specific legume lectin from Cymbosema roseum, Biochimie, vol.93, pp.806-816, 2011.

R. A. Moreira, A. C. Barros, J. C. Stewart, and A. Pusztai, Isolation and characterization of a lectin from the seeds of Dioclea grandiflora (Mart.), Planta, vol.158, pp.63-69, 1983.

D. A. Rozwarski, B. M. Swami, C. F. Brewer, and J. C. Sacchetini, Crystal structure of the lectin from Dioclea grandiflora complexed with core trimannoside of asparagine-linked carbohydrates, J. Biol. Chem, vol.273, pp.32818-32825, 1998.

D. A. Wah, A. Romero, F. Gallego-del-sol, B. S. Cavada, M. V. Ramos et al., Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association, J. Mol. Biol, vol.310, pp.885-894, 2001.

K. S. Nascimento, M. Q. Santiago, V. R. Pinto-junior, V. J. Osterne, F. W. Martins et al., Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein, Int. J. Biochem. Cell Biol, vol.92, pp.79-89, 2017.

R. B. Leal, V. R. Pinto-junior, V. J. Osterne, I. A. Wolin, A. P. Nascimento et al., Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells, Int. J. Biol. Macromol, vol.114, pp.64-76, 2018.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

V. R. Pinto-junior, V. J. Osterne, M. Q. Santiago, J. L. Correia, F. N. Pereira-junior et al., Structural studies of a vasorelaxant lectin from Dioclea reflexa Hook seeds: Crystal structure, molecular docking and dynamics, Int. J. Biol. Macromol, vol.98, pp.12-23, 2017.

T. M. De-oliveira, P. Delatorre, B. A. Da-rocha, E. P. De-souza, K. S. Nascimento et al., Crystal structure of Dioclea rostrata lectin: Insights into understanding the pH-dependent dimer-tetramer equilibrium and the structural basis for carbohydrate recognition in Diocleinae lectins, J. Struct. Biol, vol.164, pp.177-182, 2008.

I. L. Barroso-neto, P. Delatorre, C. S. Teixeira, J. L. Correia, J. B. Cajazeiras et al., Structural analysis of a Dioclea sclerocarpa lectin: Study on the vasorelaxant properties of Dioclea lectins, Int. J. Biol. Macromol, vol.82, pp.464-470, 2016.

M. J. Bezerra, N. V. Rodrigues, F. Pires-ade, G. A. Bezerra, C. B. Nobre et al., Crystal structure of Dioclea violacea lectin and a comparative study of vasorelaxant properties with Dioclea rostrata lectin, Int. J. Biochem. Cell Biol, vol.45, pp.807-815, 2013.

R. Batista-da-nóbrega, B. A. Rocha, C. A. Gadelha, T. Santi-gadelha, A. F. Pires et al., Structure of Dioclea virgata lectin: Relations between carbohydrate binding site and nitric oxide production, Biochimie, vol.94, pp.900-906, 2012.

T. B. Rangel, B. A. Rocha, G. A. Bezerra, A. M. Assreuy, F. Pires-ade et al., Crystal structure of a pro-inflammatory lectin from the seeds of Dioclea wilsonii Standl, Biochimie, vol.94, pp.525-532, 2012.

B. S. Cavada, M. Richardson, A. Yarwood, D. Père, and P. Rougé, The amino acid sequences of the ? subunits of the lectins from Lathyrus cicera, L. aphaca and L. articulatus, Phytochemistry, vol.25, pp.115-118, 1986.

A. Yarwood, M. Richardson, B. S. Cavada, D. Père, and P. Rougé, The amino acid sequences of the ? subunits of the lectins from the seeds of Lathyrus hirsutus and Lathyrus tingitanus, Phytochemistry, vol.25, pp.2109-2112, 1986.

A. Yarwood, M. Richardson, B. Morphet, M. Westby, D. Père et al., The amino acid sequences of two atypical single-chain Vicieae isolectins from seeds of Lathyrus nissolia L, Phytochemistry, vol.27, pp.1719-1721, 1988.

Y. Bourne, C. Abergel, C. Cambillau, M. Frey, P. Rougé et al., X-ray crystal structure determination and refinement at 1.9 Å resolution of isolectin I from the seeds of Lathyrus ochrus, J. Mol. Biol, vol.214, pp.571-584, 1990.

J. Kolberg, Isolation and partial characterization of a mitogenic lectin from Lathyrus odoratus seeds, Acta Pathol. Microbiol. Scand. C, vol.86, pp.99-104, 1978.

K. Sletten and J. Kolberg, The primary structure of the ? chain of a mitogenic lectin from the seeds of Lathyrus sativus, Hoppe Seylers Z. Physiol. Chem, vol.364, pp.1047-1051, 1983.

M. Richardson, A. Yarwood, and P. Rougé, The amino acid sequence of an atypical single-chain lectin from seeds of Lathyrus sphaericus, FEBS Lett, vol.216, pp.145-150, 1987.

M. Tichá, I. Zeineddine, and J. Kocourek, Studies on lectins. XLVIII. Isolation and characterization of lectins from the seeds of Lathyrus odoratus L. and Lathyrus silvestris L, Acta Biol. Med. Ger, vol.39, pp.649-655, 1980.

A. Foriers, E. Van-driessche, R. De-neve, L. Kanarek, and A. D. Strosberg, The subunit structure and N-terminal sequences of the ?-and ?-subunits of the lentil lectin, FEBS Lett, vol.75, pp.237-240, 1977.

S. Gao, J. An, C. F. Wu, Y. Gu, F. Chen et al., Effect of amino acid residue and oligosaccharide chain chemical modifications on spectral and hemagglutinating activity of Millettia dielsiana Harms. ex Diels. lectin, Acta Biochim. Biophys. Sin. (Shangai), vol.37, pp.47-54, 2005.

N. M. Young, R. E. Williams, C. Roy, and M. Yaguchi, Structural comparison of the lectin from sainfoin (Onobrychis viciifolia) with concanavalin A and other D-mannose specific lectins, Can. J. Biochem, vol.60, pp.933-941, 1982.

B. S. Cavada, L. I. Da-silva, M. V. Ramos, F. R. Galvani, T. B. Grangeiro et al., Seed lectin from Pisum arvense: Isolation, biochemical characterization and amino acid sequence, Protein Pept. Lett, vol.10, pp.607-617, 2003.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

H. Einspahr, E. H. Pareks, K. Suguna, E. Subramanian, and F. L. Suddath, The crystal structure of pea lectin at 3.0-Å resolution, J. Biol. Chem, vol.261, pp.16518-16527, 1986.

R. Loris, A. Imberty, S. Beeckmans, E. Van-driessche, J. S. Read et al., Crystal structure of Pterocarpus angolensis lectin in complex with glucose, sucrose, and turanose, J. Biol. Chem, vol.278, pp.16297-16303, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00306920

Z. Liu, B. Liu, Z. T. Zhang, T. T. Zhou, H. J. Bian et al., A mannose-binding lectin from Sophora flavescens induces apoptosis in HeLa cells, Phytomedicine, vol.15, pp.867-875, 2008.

A. Naeem, E. Ahmad, M. T. Ashraf, and R. H. Khan, Purification and characterization of mannose/glucosespecific lectin from seeds of Trigonella foenumgraecum, Biochemistry (Mosc), vol.72, pp.44-48, 2007.

C. M. Baumann, A. D. Strosberg, and H. Rüdiger, Purification and characterization of a mannose/glucose-specific lectin from Vicia cracca, Eur. J. Biochem, vol.122, pp.105-110, 1982.

N. Fornstedt and J. Porath, Characterization studies on a new lectin found in seeds of Vicia ervilia, FEBS Lett, vol.57, pp.187-191, 1975.

G. N. Reeke, . Jr, and J. W. Becker, Three-dimensional structure of favin: Saccharide binding-cyclic permutation in leguminous lectins, Science, vol.234, pp.1108-1111, 1986.

G. Gebauer, E. Schiltz, and H. Rüdiger, The amino-acid sequence of the alpha subunit of the mitogenic lectin from Vicia sativa, Eur. J. Biochem, vol.113, pp.319-325, 1981.

H. C. Silva, A. U. Bari, B. A. Rocha, K. S. Nascimento, E. L. Ponte et al., Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties, J. Mol. Recognit, vol.26, pp.470-478, 2013.

K. Mann, C. M. Farias, F. G. Sol, C. F. Santos, T. B. Grangeiro et al., The amino acid sequence of the glucose/mannose-specific lectin isolated from Parkia platycephala seeds reveals three tandemly arranged jacalin-related domains, Eur. J. Biochem, vol.268, pp.4414-4422, 2001.

B. S. Cavada, D. A. Araripe, I. B. Silva, V. R. Pinto-junior, V. J. Osterne et al., Structural studies and nociceptive activity of a native lectin from Platypodium elegans seeds (nPELa), Int. J. Biol. Macromol, vol.107, pp.236-246, 2018.

F. N. Pereira-junior, H. C. Silva, B. T. Freitas, B. A. Rocha, K. S. Nascimento et al., Purification and characterization of a mannose/N-acetyl-D-glucosamine-specific lectin from the seeds of Platymiscium floribundum Vogel, J. Mol. Recognit, vol.25, pp.443-449, 2012.

K. Nomura, H. Ashida, N. Uemura, S. Kushibe, T. Ozaki et al., Purification and characterization of a mannose/glucose-specific lectin from Castanea crenata, Phytochemistry, vol.49, pp.667-673, 1998.

D. Silva, T. A. Oliveira-brito, P. K. Gonçalves, T. E. Vendruscolo, P. E. Roque-barreira et al., ArtinM mediates murine T cell activation and induces cell death in Jurkat human leukemic T cells, Int. J. Mol. Sci, vol.18, 1400.

G. Pereira-da-silva, M. C. Roque-barreira, and E. J. Van-damme, ArtiM: A rational substitution for the names artocarpin and KM+, Immunol. Lett, vol.119, pp.114-115, 2008.

F. D. De-sousa, B. B. Da-silva, G. P. Furtado, I. S. Carneiro, M. D. Lobo et al., Frutapin, a lectin from Artocarpus incisa (breadfruit): Cloning, expression and molecular insights, Biosci. Rep, vol.37, 2017.

M. Gabrielsen, P. S. Abdul-rahman, N. W. Isaacs, O. H. Hashim, and R. J. Copgdell, Crystallization and initial X-ray diffraction analysis of a mannose-binding lectin from champedak, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.66, pp.592-594, 2010.

M. Gabrielsen, P. S. Abdul-rahman, S. Othman, O. H. Hashim, and R. J. Cogdell, Structures and binding specificity of galactose-and mannose-binding lectins from champedak: Differences from jacfruit lectins, Acta Crystallogr. F Struct. Biol. Commun, vol.70, pp.709-716, 2014.

J. C. Rosa, P. S. De-oliveira, R. Garratt, L. Beltramini, K. Resing et al., KM+, a mannose-binding lectin from Artocarpus integrifolia: Amino acid sequence, predicted tertiary structure, carbohydrate recognition, and analysis of the ?-prism fold, Protein Sci, vol.8, pp.13-24, 1999.

S. Misquith, P. G. Rani, and A. Surolia, Carbohydrate binding specificity of the B-cell maturation mitogen from Artocarpus integrifolia seeds, J. Biol. Chem, vol.269, pp.30393-30401, 1994.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

Y. Bourne, C. Houlès-astoul, V. Zamboni, W. J. Peumans, L. Menu-bouaouiche et al., Structural basios for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose, Biochem. J, vol.364, pp.173-180, 2002.

A. A. Jeyaprakash, G. Jayashree, S. K. Mahanta, C. P. Swaminathan, K. Sekar et al., Structural basis for the energetics of jacalin-sugar interactions: Promiscuity versus specificity, J. Mol. Biol, vol.347, pp.181-188, 2005.

S. Chjowdhury, H. Ahmed, and B. P. Chatterjee, Chemical modificatrion studies of Artocarpus lakoocha lectin artocarpin, Biochimie, vol.73, pp.563-571, 1991.

E. J. Van-damme, B. Hause, J. Hu, A. Barre, P. Rougé et al., Two distinct jacalin-related lectins with a different specificity and subcellular location are major vegetative storage proteins in the bark of the black mulberry tree, Plant Physiol, vol.130, pp.757-769, 2002.

Y. Bourne, V. Zamboni, A. Barre, W. J. Peumans, E. J. Van-damme et al., Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins, Structure, vol.7, pp.1473-1482, 1999.

J. Beneteau, D. Renard, L. Marché, E. Douville, L. Lavenant et al., Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis, Plant Physiol, vol.153, pp.1345-1361, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00850393

H. Peng, H. Lv, Y. Wang, Y. H. Liu, C. Y. Li et al., Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities, Peptides, vol.30, pp.1805-1815, 2009.

T. Koike, K. Titani, M. Suzuki, H. Beppu, H. Kuzuya et al., The complete amino acid sequence of a mannose-binding lectin from "Kidachi Aloe" (Aloe arborescens Miller var. natalensis Berger), Biochem. Biophys. Res. Commun, vol.214, pp.163-170, 1995.

J. Lin, X. Zhou, Y. Pang, H. Gao, J. Fei et al., Cloning and characterization of an agglutinin gene from Arisaema lobatum, Biosci. Rep, vol.25, pp.345-362, 2005.

X. Zhao, J. Yao, Z. Liao, H. Zhang, F. Chen et al., Molecular cloning of a novel mannose-binding lectin gene from Arisaema heterophyllum, Plant Sci, vol.165, pp.55-60, 2003.

E. J. Van-damme, K. Goossens, K. Smeets, F. Van-leuven, P. Verhaert et al., The major tuber storage protein of araceae species is a lectin. Characterization and molecular cloning of the lectin from Arum maculatum L, Plant Physiol, vol.107, pp.1147-1158, 1995.

P. R. Pereira, H. C. Winter, M. A. Vericimo, J. L. Meagher, J. A. Stckey et al., Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta, Biochim. Biophys. Acta, vol.1854, pp.20-30, 2015.

Y. Nakagawa, H. Sakamoto, H. Tateno, J. Hirabayashi, and S. Oguri, Purification, characterization, and molecular cloning of lectin from winter buds of Lysichiton camtschatcensis (L.) Schott, Biosci. Biotechnol. Biochem, vol.76, pp.25-33, 2012.

J. H. Yao, X. Y. Zhao, Z. H. Liao, J. Lin, Z. H. Chen et al., Cloning and molecular characterization of a novel lectin gene from Pinellia ternata, Cell Res, vol.13, pp.301-308, 2003.

K. N. Shetty, G. G. Bhat, S. R. Inamdar, B. M. Swamy, and K. Suguna, Crystal structure of a ?-prism II lectin from Remusatia vivipara, Glycobiology, vol.22, pp.56-69, 2012.

Y. Luo, X. Xu, J. Liu, J. Li, Y. Sun et al., A novel mannose-binding tuber lectin from Typhonium divaricatum (L.) Decne (family Araceae) with antiviral activity against HSV-II and anti-proliferative effect on human cancer cell lines, J. Biochem. Mol. Biol, vol.40, pp.358-367, 2007.

H. Mo, K. G. Rice, D. L. Evers, H. C. Winter, W. J. Peumans et al., Xanthosoma sagittifolium tubers contain a lectin with two different types of carbohydrate-binding sites, J. Biol. Chem, vol.274, pp.33300-33305, 1999.

Z. Chen, Y. Pang, X. Liu, X. Wang, Z. Deng et al., Molecular cloning and characterization of a novel mannose-binding lectin cDNA from Zantedeschia aethiopica, Biocell, vol.29, pp.187-193, 2005.

B. Liu, H. Peng, Q. Yao, J. Li, E. Van-damme et al., Bioinformatics analyses of the mannose-binding lectins from Polygonatum cyrtonema, Ophiopogon japonicus and Liparis noversa with antiproliferative and apoptosis-inducing activities, Phytomedicine, vol.16, pp.601-608, 2009.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

J. Ding, J. Bao, D. Zhu, Y. Zhang, and D. C. Wang, Crystal structure of a novel anti-HIV mannose-binding lectin from Polygonatum cyrtonema Hua with unique ligand-binding property and super-structure, J. Struct. Biol, vol.171, pp.309-317, 2010.

E. J. Van-damme, A. Barre, P. Rougé, F. Van-leuven, J. Balzarini et al., Molecular cloning of the lectin and a lectin-related protein from common Solomon's seal (Polygonatum multiflorum), Plant Mol. Biol, vol.31, pp.657-672, 1996.

Y. Yang, H. L. Xu, Z. T. Zhang, J. J. Liu, W. W. Li et al., Characterization, molecular cloning, and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II and apoptosis-inducing activities, Phytomedicine, vol.18, pp.748-755, 2011.

Y. Bourne, V. Roig-zamboni, A. Barre, W. J. Peumans, C. H. Astoul et al., The crystal structure of the Calystegia sepium agglutinin reveals a novel quaternary arrangement of lectin subunits with a ?-prism fold, J. Biol. Chem, vol.279, pp.527-533, 2004.

W. C. Chang, K. L. Liu, F. C. Hsu, S. T. Jeng, and Y. S. Cheng, Ipomoelin, a jacalin-related lectin with a compact tetrameric association and versatile carbohydrate binding properties regulated by its N terminus, PLoS ONE, vol.7, 2012.

S. K. Upadhyay, S. Saurabh, R. Singh, P. Rai, N. K. Dubey et al., Purification and characterization of a lectin with high hemagglutination property isolated from Allium altaicum, Protein J, vol.30, pp.374-383, 2011.

H. Mo, E. J. Van-damme, W. J. Peumans, and I. J. Goldstein, Purificartion and characterization of a mannose-specific lectin from shallot (Allium ascalonicum) bulbs, Arch. Biochem. Biophys, vol.306, pp.431-438, 1993.

E. J. Van-damme, K. Smeets, I. Engelborghs, H. Aelbers, J. Balzarini et al., Cloning and characterization of the lectin cDNA clones from onion, shallot and leek, Plant. Mol. Biol, vol.23, pp.365-376, 1993.

E. J. Van-damme, K. Smmets, S. Torrekens, F. Van-leuven, I. J. Goldstain et al., The closely relataed homomeric and heterodimeric mannose-binding lectins from garlic are encoded by one-domain and two-domain lectin genes, respectively, Eur. J. Biochem, vol.206, pp.413-420, 1992.

L. S. Ooi, H. Yu, C. M. Chen, S. S. Sun, and V. E. Ooi, Isolation and characterization of a bioactive mannose-binding protein from the Chinese chive Allium tuberosum, J. Agric. Food Chem, vol.50, pp.696-700, 2002.

E. J. Van-damme, K. Smeets, S. Torrekens, F. Van-leuven, and W. J. Peumans, The mannose-specific lectins from ramsons (Allium ursinum L.) are encoded by three sets of genes, Eur. J. Biochem, vol.217, pp.123-129, 1993.

C. Wu, J. An, X. He, J. Deng, Z. Hong et al., Molecular cloning of a novel mannose-binding lectin gene from bulbs of Amaryllis vittata

, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, vol.46, pp.1301-1306, 2004.

E. J. Van-damme, K. Smeets, F. Van-leuven, and W. J. Peumans, Molecular cloning of mannose-binding lrctins from Clivia miniata, Plant Mol. Biol, vol.24, pp.825-830, 1994.

Y. Chai, Y. Pang, Z. Liao, L. Zhang, X. Sun et al., Molecular cloning and characterization of a mannose-binding lectin gene from Crinum asiaticum, J. Plant Physiol, vol.160, pp.913-920, 2003.

E. J. Van-damme, H. Kaku, F. Perini, I. J. Goldstein, B. Peeters et al., Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin, Eur. J. Biochem, vol.202, pp.23-30, 1991.

H. Kaku, E. J. Van-damme, W. J. Peumans, and I. J. Goldstein, Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins, Arch. Biochem. Biophys, vol.279, pp.298-304, 1990.

L. L. Antoniuk and V. O. Antoniuk, Interaction of immobilized lectin from Leucojum vernum L. with polysaccharides and glycoproteins, Ukrainskii Biokhimicheskii Zhurnal, vol.65, pp.69-77, 1978.

C. Wu, J. Li, J. An, L. Chang, F. Che et al., Purification, biological activities, and molecular cloning of a novel mannose-binding lectin from bulbs of Zephyranthes candida herb (Amaryllidaceae), J. Integr. Plant Biol, vol.48, pp.223-231, 2006.

J. Bao, C. Wu, J. An, S. Gao, X. Zhao et al., Molecular cloning and analysis of a monocot mannose-binding agglutinin from Zephyranthes grandiflora

, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, vol.21, pp.812-818, 2004.

J. Liu, X. Xu, J. Liu, J. Balzarini, Y. Luo et al., A novel tetrameric lectin from Lycoris aurea with four mannose binding sites per monomer, Acta Biochim. Pol, vol.54, pp.159-166, 2007.

X. Zhao, J. Yao, X. Sun, and K. Tang, Molecular cloning and characterization of a novel lectin gene from Lycoris radiata, DNA Seq, vol.14, pp.223-226, 2003.

Y. Ohizumi, M. Gaidamashvili, S. Ohwada, K. Matsuda, J. Kominami et al., Mannose-binding lectin from yam (Dioscorea batatas) tubers with insecticidal properties against Helicoverpa armigera (Lepidoptera:Noctuidae), J. Agric. Food Chem, vol.57, pp.2896-2902, 2009.

M. Sharma, H. Vishwanathreddy, B. R. Sindhura, A. S. Kamalanathan, B. M. Swamy et al., Purification, characterization and biological significance of mannose binding lectin from Dioscorea bulbifera bulbils, Int. J. Biol. Macromol, vol.101, pp.1146-1155, 2017.

Y. Oda, K. Nakayama, B. Abdul-rahman, M. Kinoshita, O. Hashimoto et al., Crocus sativus lectin recognizes Man3GlncNAc in the N-glycan core structure, J. Biol. Chem, vol.275, pp.26772-27779, 2000.

J. Escribano, A. Rubio, M. Alvarez-ortí, A. Molina, and J. A. Fernández, Purification and characterization of a mannan-binding lectin specifically expressed in corms of saffrom plant (Crocus sativus L.), J. Agric. Food Chem, vol.48, pp.457-463, 2000.

E. J. Van-damme, C. H. Astoul, A. Barre, P. Rougé, and W. J. Peumans, Cloning and characterization of a monocot mannose-binding lectin from Crocus vernus (family Iridaceae), Eur. J. Biochem, vol.267, pp.5067-5077, 2000.

X. Xu, C. Wu, C. Liu, C. Luo, Y. Luo et al., Purification and characterization of a mannose-binding lectin from the rhizomes of Aspidistra elatior Blume with antiproliferative activity, Acta Biochimi. Biophys. Sin, vol.39, pp.507-519, 2007.

L. S. Ooi, W. S. Ho, K. L. Ngai, L. Tian, P. K. Chan et al., Narcissus tazetta lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses, J. Biosci, vol.35, pp.95-103, 2010.

S. López, M. Armand-ugon, J. Bastida, F. Viladomat, J. A. Esté et al., Anti-human immunodeficiency virus type 1 (HIV-1) activity of lectins from Narcissus species, Planta Med, vol.69, pp.109-112, 2003.

E. J. Van-damme, F. Briké, H. C. Winter, F. Van-leuven, I. J. Goldstein et al., Molecular cloning of two different mannose-binding lectins from tulip bulbs, Eur. J. Biochem, vol.236, pp.419-427, 1996.

L. S. Ooi, S. S. Sun, H. Wang, and V. E. Ooi, New mannose-binding lectin isolated from the rhizome of Sarsaparilla Smilax glabra Roxb. (Liliaceae), J. Agric. Food Chem, vol.52, pp.6091-6095, 2004.

L. M. Wright, S. D. Wood, C. D. Reynolds, P. J. Rizkallah, W. J. Peumans et al., Purification, crystalolization and preliminary X-ray analysis of a mannose-binding lectin from bluebell (Scilla campanulata) bulbs, Acta Crystallogr. D Biol. Crystallogr, vol.52, pp.1021-1023, 1996.

A. Sharma and M. Vijayan, Influence of glycosidic linkage on the nature of carbohydrate binding in ?-prism I fold lectins: An X-ray and molecular dynamics investigation on banana lectin-carbohydrate complexes, Glycobiology, vol.21, pp.23-33, 2011.

D. D. Singh, K. Saikrishnan, P. Kumar, A. Surolia, K. Sekar et al., Unusual sugar specificity of banana lectin from Musa paradisiaca and its probable evolutionary origin. Crystallographic and modelling studies, Glycobiology, vol.15, pp.1025-1032, 2005.

L. S. Ooi, S. S. Sun, and V. E. Ooi, Purification and characterization of a new antiviral protein from the leaves of Pandanus amaryllifolius (Pandanaceae), Int. J. Biochem. Cell Biol, vol.36, pp.1440-1446, 2004.

E. J. Van-damme, K. Smeets, S. Torrekens, F. Van-leuven, and W. J. Peumans, Characterization and molecular cloning of mannose-binding lectins from the Orchidaceae species Listera ovata, Epipactis helleborine and Cymbidium hybrid, Eur. J. Biochem, vol.221, pp.769-777, 1994.

Z. Chen, X. Sun, and K. Tang, Cloning and expression of a novel cDNA encoding a mannose-binding lectin from Dendrobium officinale, Toxicon, vol.45, pp.535-540, 2005.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

W. Liu, N. Yang, J. Ding, R. H. Huang, Z. Hu et al., Structural mechanism governing the quaternary organization of monocot mannose-binding lectin revealed by the novel monomeric structure of an orchid lectin, J. Biol. Chem, vol.280, pp.14865-14976, 2005.

W. Zhang, W. J. Peumans, A. Barre, C. H. Astoul, P. Rovira et al., Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants, Planta, vol.210, pp.970-978, 2000.

D. Nascimento-neto, L. G. Carneiro, R. F. Da-silva, S. R. Rocha-da-silva, B. Arruda et al., Characterization of isoforms of the lectin isolated from the red algae Bryothamnion seaforthii and its pro-healing effect, Mar. Drugs, vol.10, pp.1936-1954, 2012.

J. J. Calvete, F. H. Costa, S. Saker-sampaio, M. P. Murciano, C. S. Nagano et al., The amino acid sequence of the agglutinin isolated from the red marine alga Bryothamnion triquetrum defines a novel lectin structure, Cell Mol. Life Sci, vol.57, pp.343-350, 2000.

L. D. Hung, M. Hirayama, B. M. Ly, and K. Hori, Purification, primary structure, and biological activity of the high-mannose N-glycan-specific lectin from cultivated Eucheuma denticulatum, J. Appl. Phycol, vol.27, pp.1657-1669, 2015.

T. Sugahara, Y. Ohama, A. Fukuda, M. Hayashi, A. Kawakubo et al., The cytotoxic effect of Eucheuma serrata agglutinin (ESA) on cancer cells and its application to molecular probe for drug delivery system using lipid vesicles, Cytotechnology, vol.36, pp.93-99, 2001.

T. Mori, B. R. O'keefe, R. C. Sowder, S. Bringans, R. Gardella et al., Isolation and characterizatiopn of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp, J. Biol. Chem, vol.280, pp.9345-9353, 2005.

N. E. Zló?kowska, B. R. O'keefe, T. Mori, C. Zhu, B. Giomarelli et al., Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding, Structure, vol.14, pp.1127-1138, 2006.

K. S. Nascimento, C. S. Nagano, E. V. Nunes, R. F. Rodrigues, G. V. Goersch et al., Isolation and characterization of a new agglutinin from the red marine alga Hypnea cervicornis, J. Agardh. Biochem. Cell Biol, vol.84, pp.49-54, 2006.

C. S. Nagano, F. B. Moreno, C. Bloch, . Jr, M. V. Prates et al., Purification and characterization of a new lectin from the red marine alga Hypnea musciformis, Protein Pept. Lett, vol.9, pp.159-166, 2002.

Y. Sato, K. Morimoto, M. Hirayama, and K. Hori, High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner, Biochem. Biophys. Res. Commun, vol.405, pp.291-296, 2011.

L. D. Hung, Y. Sato, and K. Hori, High-mannose N-glycan-specific lectin from the red alga Kappaphycus striatum (Carrageenophyte), Phytochemistry, vol.72, pp.855-861, 2011.

Y. Sato, M. Hirayama, K. Morimoto, N. Yamamoto, S. Okuyama et al., High-mannose-binding lectin with preference for the cluster of ?1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses, J. Biol. Chem, vol.286, 2011.

J. Mu, M. Hirayama, Y. Sato, K. Morimoto, and K. Hori, A novel high-mannose specific lectin from the green alga Halimeda renschii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral hemagglutinin, Mar. Drugs, vol.15, 2017.

T. Wohlschlager, A. Butschi, P. Grassi, G. Sutov, R. Gauss et al., Methylated glycans as conserved targets of animal and fungal innate defense, Proc. Natl. Acad. Sci, vol.111, pp.2787-2796, 2014.

R. Sommer, O. N. Makshakova, T. Wohlschlager, S. Hutin, M. Marsh et al., Crystal structure of fungal tectonin in complex with O-methylated glycans suggest key role in innate immune defense, Structure, vol.26, pp.391-402, 2018.

F. Francis, K. Jaber, F. Colinet, D. Portetelle, and E. Haubruge, Purification of a new fungal mannose-specific lectin from Penicillium chrysogenum and its aphicidal properties, Fungal Biol, vol.115, pp.1093-1099, 2011.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

M. Veelders, S. Brückner, D. Ott, C. Unverzagt, H. U. Mösch et al., Structural basis of flocculin-mediated social behavior in yeast, Proc. Natl. Acad. Sci, vol.107, pp.22511-22516, 2010.

K. V. Goossens, F. S. Ielasi, I. Nookaew, I. Stals, L. Alonso-sarduy et al., Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival, MBio, vol.6, pp.427-442, 2015.

L. J. Olson, R. Orsi, F. C. Peterson, A. J. Parodi, J. J. Kim et al., Crystal structure and functional analyses of the lectin domain of glucosidase II: Insights into oligomannose recognition, Biochemistry, vol.54, pp.4097-4111, 2015.

T. Suzuki, K. Sugiyama, H. Hirai, H. Ito, T. Morita et al., Mannose-specific lectin from the mushroom Hygrophorus russula, Glycobiology, vol.22, pp.616-629, 2012.

M. Shimokawa, A. Fukudome, R. Yamashita, Y. Minami, F. Yagi et al., Characterization and cloning of GNA-like lectin from the mushroom Marasmius oreades, Glycoconj. J, vol.29, pp.457-465, 2012.

L. M. Koharudin, A. R. Viscomi, J. G. Jee, S. Ottonello, and A. M. Gronenborn, The evolutionary conserved family of cyanovirin-N homologs: Structures and carbohydrate specificity, Structure, vol.16, pp.570-584, 2008.

R. Loris, D. Van-overberge, M. H. Dao-thi, F. Poortmans, N. Maene et al., Structural analysis of two crystal forms of lentil lectin at 1.8 Å resolution, Proteins, vol.20, pp.330-346, 1994.

K. D. Hardman and C. F. Ainsworth, Structure of concanavalin A at 2.4-Å resolution, Biochemistry, vol.11, pp.4910-4919, 1972.

L. R. Olsen, A. Dessen, D. Gupta, S. Sabesan, J. C. Sacchettini et al., X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin, Biochemistry, vol.36, pp.15073-15080, 1997.

R. Banerjee, K. Das, R. Ravishankar, K. Suguna, A. Surolia et al., Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex, J. Mol. Biol, vol.259, pp.281-296, 1996.

S. Elgavish and B. Shaanan, Structures of the Erythrina corallodendron lectin and of its complexes with monoand disaccharides, J. Mol. Biol, vol.277, pp.917-932, 1998.

T. W. Hamelryck, M. H. Dao-thi, F. Poortmans, M. J. Chrispeels, L. Wyns et al., The crystallographic structure of phytohemagglutinin-L, J. Biol. Chem, vol.271, pp.20479-20485, 1996.

M. Nagae, K. Soga, K. Morita-matsumoto, S. Hanashima, A. Ikeda et al., Phytohemagglutinin from Phaseolus vulgaris (PHA-E) displays a novel glycan recognition mode using a common legume lectin fold, Glycobiology, vol.24, pp.368-378, 2014.

J. V. Pratap, A. A. Jeyaprakash, P. G. Rani, K. Sekar, A. Surolia et al., Crystal structure of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-?-D-mannose: Implications to the generation of carbohydrate specificity, J. Mol. Biol, vol.317, pp.237-247, 2002.

R. Sankaranarayanan, K. Sekar, R. Banerjee, V. Sharma, A. Surolia et al., A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a ?-prism fold, Nat. Struct. Biol, vol.3, pp.596-603, 1996.

X. Lee, A. Thompson, Z. Zhang, H. Ton-that, J. Biesterfeldt et al., Structure of the complex of Maclura pomifera agglutinin and the T-antigen disaccharide, Gal?1,3GalNAc, J. Biol. Chem, vol.273, pp.6312-6318, 1998.

A. Rabijns, A. Barre, E. J. Van-damme, W. J. Peumans, C. J. De-ranter et al., Structural analysis of the jacalin-related lectin MornigaM from the black mulberry (Morus nigra) in complex with mannose, FEBS J, vol.272, pp.3725-3732, 2005.

G. Hester, H. Kaku, I. J. Goldstein, and C. S. Wright, Structure of mannose-specific snowdrop (Galmanthus nivalis) lectin is representative of a new plant lectin family, Nat. Struct. Biol, vol.2, pp.472-479, 1995.

P. R. Pereira, J. L. Meagher, H. C. Winter, I. J. Goldstein, V. M. Paschoalin et al., High-resolution crystal structures of Colocasia esculenta tarin lectin, Glycobiology, vol.27, pp.50-56, 2017.

T. R. Transue, A. K. Smith, H. Mo, I. J. Goldstein, and M. A. Saper, Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin, Nat. Struct. Biol, vol.4, pp.779-783, 1997.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

D. Schutter, K. Tsaneva, M. Kulkarni, S. R. Rougé, P. Vandepoele et al., Evolutionary relationships and expression analysis of EUL domain proteins in rice (Oryza sativa), vol.10, 2017.

U. Sharma, U. V. Katre, and C. G. Suresh, Crystal structure of a plant albumin from Cicer arietinum (chickpea) possessing hemopexin fold and hemagglutination activity, Planta, vol.241, pp.1061-1073, 2015.

N. Kostlánová, E. P. Mitchell, H. Lortat-jacob, S. Oscarson, M. Lahmann et al., The fucose-binding lectin from Ralstonia solanacearum. A new type of ?-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan, J. Biol. Chem, vol.280, pp.27839-27849, 2005.

A. Kumar, P. Sýkorová, G. Demo, P. Dobe?, P. Hyr?l et al., A novel fucose-binding lectin from Photorhabdus luminescens (PPL) with an unusual heptabladed ?-propeller tetrameric structure, J. Biol. Chem, vol.291, pp.25032-25049, 2016.

G. Jan?a?iková, J. Houser, P. Dobe?, G. Demo, P. Hyr?l et al., Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity, PLoS Pathog, vol.13, 2017.

I. Yadid, N. Kirshenbaum, M. Sharon, O. Dym, and D. S. Tawfik, Metamorphic proteins mediate evolutionary transitions of structure, Proc. Natl Acad. Sci, vol.107, pp.7287-7292, 2010.

G. Cioci, E. P. Mitchell, V. Chazalet, H. Debray, S. Oscarson et al., Beta-propeller crystal structure of Psathyrella velutina lectin: An integrin-like fungal protein interacting with monosaccharides and calcium, J. Mol. Biol, vol.357, pp.1575-1591, 2006.

J. P. Ribeiro, M. Hassan, R. Rouf, E. Tiralongo, T. W. May et al., Biophysical characterization and structural determination of the potent cytotoxic Psathyrella asperospora lectin, vol.85, pp.969-975, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02378060

A. Audfray, J. Claudinon, S. Abounit, N. Ruvoën-clouet, G. Larson et al., Fucose-binding lectin from opportunistic pathogen Burkholderia ambifaria binds to both plant and human oligosaccharidic epitopes, J. Biol. Chem, vol.287, pp.4335-4347, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00720280

S. Shahzad-ul-huassan, E. Gustchina, R. Ghirlando, G. M. Clore, and C. A. Bewley, Solution structure of the monovalent lectin microvirin in complex with Man?(1-2)Man provides a basis for anti-HIV activity with low toxicity, J. Biol. Chem, vol.286, pp.20788-20796, 2011.

H. Chiba, J. Inokoshi, M. Okamoto, K. Matsuzaki, M. Iwama et al., Actinohivin, a novel anti-HIV protein from an actinomycete that inhibits syncytium formation: Isolation, characterization, and biological activites, Biochem. Biophys. Res. Commun, vol.282, pp.595-601, 2001.

E. Lameignere, L. Malinovská, M. Sláviková, E. Duchaud, E. P. Mitchell et al., Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocapacia, Biochem. J, vol.411, pp.307-318, 2008.

E. Matei, R. Basu, W. Furey, J. Shi, C. Calnan et al., Structure and glycan binding of a new cyanovirin-N homolog, J. Biol. Chem, vol.291, pp.18967-18976, 2016.

E. Matei, J. M. Louis, J. Jee, and A. M. Gronenborn, NMR solution structure of a cyanovirin homolog from wheat head blight fungus, Proteins, vol.79, pp.1538-1549, 2011.

L. M. Koharudin, W. Furey, and A. M. Gronenborn, Novel fold and carbohydrate specificity of the potent anti-HIV cyanobacterial lectin from Oscillatoria agardhii, J. Biol. Chem, vol.286, pp.1588-1597, 2011.

D. C. Williams, . Jr, J. Y. Lee, M. Cai, C. A. Bewley et al., Crystal structures of the HIV-1 inhibitory protein MVL free and bound to Man3GlcNAc2: Structural basis for specificity and high-affinity binding to the core pentasaccharide from N-linked oligomannoside, J. Biol. Chem, vol.280, pp.29269-29276, 2005.

L. M. Koharudin, S. Kollipara, C. Aiken, and A. M. Gronenborn, Structural insights into the anti-HIV activity of the Oscillatoria agardhii agglutinin homolog lectin family, J. Biol. Chem, vol.287, pp.33796-33811, 2012.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

G. M. Clore and C. A. Bewley, Using conjoined rigid body.torsion angle simulated annealing to determine the relative orientation of covalently linked protein domains from dipolar couplings, J. Magn. Reson, vol.154, pp.329-335, 2002.

M. G. Ghequire, A. Garcia-pino, E. K. Lebbe, S. Spaepen, R. Loris et al., Structural determinants for activity and specificity of the bacterial toxin LlpA, PLoS Pathog, vol.9, 2013.

R. L. Mcfeeters, C. Xiong, B. R. O'keefe, H. R. Bokesh, J. B. Mcmahon et al., The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors, J. Mol. Biol, vol.369, pp.451-461, 2007.

A. B. Boraston, T. J. Revett, C. M. Boraston, D. Nurizzo, and G. J. Davies, Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27. Structure, pp.665-675, 2003.

Y. Bourne, P. Rougé, and C. Cambillau, X-ray structure of a (?-Man(1-3)?-Man(1-4)GlcNAc)-lectin complex at 2.1-Å resolution. The role of water in sugar-lectin interaction, J. Biol. Chem, vol.265, pp.18161-18165, 1990.

Y. Bourne, P. Rougé, and C. Cambillau, X-ray structure of a biantennary octasaccharide-lectin complex refined at 2.3-Å resolution, J. Biol. Chem, vol.267, pp.197-203, 1992.

Y. Bourne, J. Mazurier, D. Legrans, P. Rougé, J. Montreuil et al., Structure of a legume lectin complexed with the human lactotransferrin N2 fragment, and with an isolated biantennary glycopeptide: Role of the fucose moiety, Structure, vol.2, pp.209-219, 1994.

L. Buts, A. Garcia-pino, L. Wyns, and R. Loris, Structural basis of carbohydrate recognition by a Man(?1-2)Manspecific lectin from Bowringia milbraedii, Glycobiology, vol.16, pp.635-640, 2006.

J. H. Naismith and R. A. Field, Structural basis of trimannoside recognition by concanavalin A, J. Biol. Chem, vol.271, pp.972-976, 1996.

D. N. Moothoo and J. H. Naismith, Concanavalin A distorts the ?-GlcNAc-(1,2)-Man linkage of ?-GlcNAc-(1,2)-?-Man-(1,3)-[?-GlcNAc-(1,2)-?-Man)(1,6)]-Man upon binding, Glycobiology, vol.8, pp.173-181, 1998.

D. N. Moothoo, B. Canan, R. A. Field, and J. Naismith, Man?1-2Man?-OMe-concanavalin A complex reveals a balance of forces involved in carbohydrate recognition, Glycobiology, vol.9, pp.539-545, 1999.

D. A. Sanders, D. N. Moothoo, J. Reftery, A. J. Howard, J. R. Helliwell et al., The 1.2 Å resolution structure of the Con A-dimannose complex, J. Mol. Biol, vol.310, pp.875-884, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00444084

R. Loris, D. Maes, F. Poortmans, L. Wyns, and J. Bouckaert, A structure of the complex between concanavalin A and methyl-3,6-di-O-(?-D-mannopyranosyl)-?-D-mannopyranoside reveals two binding modes, J. Biol. Chem, vol.271, pp.30614-30618, 1996.

J. Bouckaert, T. W. Hamelryck, L. Wyns, and R. Loris, The crystal structure of Man(?1-3)Man(?1-O)Me and Man(?1-6)Man(?1-O)Me in complex with concanavalin A, J. Biol. Chem, vol.274, pp.29188-29195, 1999.

P. N. Kanellopoulos, K. Pavlou, A. Perrakis, B. Agianian, C. E. Vorgias et al.,

, D-mannopyranoside and 4 -nitrophenyl-?-D-glycopyranoside, J. Struct. Biol, vol.116, pp.345-355, 1996.

J. H. Naismith, C. Emmerich, J. Habash, S. J. Harrop, J. R. Helliwell et al., Refined structure on concanavalin A complexed with methyl ?-D-mannopyranoside at 2.0 Å resolution and comparison with the saccharide-free structure, Acta Crystallogr. D Biol. Crystallogr, vol.50, pp.847-858, 1994.

O. O. Gerlits, L. Coates, R. J. Woods, and A. Kovalevsky, Mannobiose binding induces changes in hydrogen bonding and protonation states of acidic residues in concanavalin A as revealed by neutron crystallograohy, vol.56, pp.4747-4750, 2017.

P. Delatorre, B. A. Rocha, E. P. Souza, T. M. Oliveira, G. A. Benzerra et al., Structure of a lectin from Canavalia gladiata seeds: New structureinsightys for old molecules, BMC Struct. Biol, vol.7, p.52, 2007.

G. A. Bezerra, T. M. Oliveira, F. B. Moreno, E. P. De-souza, B. A. Da-rocha et al., Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: New insights into the understaznding of the structure-biological activity relationship in legume lectins, J. Struct. Biol, vol.160, pp.168-176, 2007.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

Y. Bourne, A. Roussel, M. Frey, P. Rougé, J. C. Fontecilla-camps et al., Three-dimensional structures of Lathyrus ochrus isolectin I with glucose and mannose: Fine specificity of the monosaccharidebinding site, Proteins, vol.8, pp.365-376, 1990.

V. R. Pinto-junior, M. Q. Santiago, C. B. Nobre, V. J. Osterne, R. B. Leal et al., Crystal structure of Pisum arvense seed lectin (PAL) and characterization of its interaction with carbohydrates by molecular docking and dynamics, Arch. Biochem. Biophys, vol.630, pp.27-37, 2017.

S. N. Ruzheinikov, I. Y. Mikhailova, I. N. Tsygannik, W. Pangborn, W. Duax et al., The structure of the pea lectin-D-mannopyanose complex at 2.1 Å resolution, Russ. J. Bioorg. Chem, vol.24, pp.277-279, 1998.

J. M. Rini, K. D. Hardman, H. Einspahr, F. L. Suddath, and J. P. Carver, X-ray crystal structure of a pea lectin-trimannoside complex at 2.6 Å resolution, J. Biol. Chem, vol.268, pp.10126-10132, 1993.

R. Loris, I. Van-walle, H. De-greve, S. Beeckmans, F. Deboeck et al., Structural basis of oligomannose recognition by the Pterocarpus angolensis seed lectin, J. Mol. Biol, vol.335, pp.1227-1240, 2004.

L. Buts, A. Garcia-pino, A. Imberty, N. Amiot, G. J. Boon et al., Structural basis for the recognition of complex-type biantennary oligosaccharides by Pterocarpus angolensis lectin, FEBS J, vol.273, pp.2407-2420, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305814

A. Garcia-pino, L. Buts, L. Wyns, and R. Loris, Interplay between metal binding and cis/trans isomerization in legume lectins: Structural and thermodynamic study of P. angolensis lectin, J. Mol. Biol, vol.361, pp.153-167, 2006.

A. Garcia-pino, L. Buts, L. Wyns, A. Imberty, and R. Loris, How a plant lectin recognizes high mannose oligosaccharides, Plant Physiol, vol.144, pp.1733-1741, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00305566

A. A. Jeyaprakash, A. Srivastav, A. Surolia, and M. Vijayan, Structural basis for the carbohydrate specificities of artocarpin: Variation in the length of a loop as a strategy for generating ligand specificity, J. Mol. Biol, vol.338, pp.757-770, 2004.

N. R. Chandra, G. Ramachandraiah, K. Bachhawat, T. K. Dam, A. Surolia et al., Crystal structure of a dimeric mannose-specific agglutinin from garlic: Quaternary association and carbohydrate specificity, J. Mol. Biol, vol.285, pp.1157-1168, 1999.

G. Ramachandraiah, N. R. Chandra, A. Surolia, and M. Vijayan, Re-refinement using processed data to improve the quality of the structure: A case study involving garlic lerctin, Acta Crystallogr. D Biol. Crystallogr, vol.58, pp.414-420, 2002.

C. S. Wright and G. Hester, The 2.0 Å structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: Evidence for two unique binding modes, Structure, vol.4, pp.1339-1352, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00404693

G. Hester and C. S. Wright, The mannose-specific bulb lectin from Galanthus nivalis (snowdrop) binds monoand dimannosides at distinct sites. Structure analysis of refined complexes at 2.3 Å and 3.0 Å resolution, J. Mol. Biol, vol.262, pp.516-531, 1996.

M. K. Sauerborn, L. M. Wright, C. D. Reynolds, J. G. Grossmann, and P. J. Rizkallah, Insights into carbohydrate recognition by Narcissus pseudonarcissus lectin: The crystal structure at 2 Å resolution in complex with ?1-3 mannobiose, J. Mol. Biol, vol.290, pp.185-199, 1999.

M. D. Swanson, D. M. Boudreaux, L. Salmon, J. Chugh, H. C. Winter et al., Engineering a therapeutic lectin by uncoupling mitogenicity from antiviral activity, Cell, vol.163, pp.746-758, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01235420

M. Nagae, S. K. Mishra, S. Hanashima, H. Tateno, and Y. Yamaguchi, Distinct roles for each N-glycan branch interacting with mannose-binding type jacalin-related lectins Orysata and Calsepa, Glycobiology, vol.27, pp.1120-1133, 2017.

N. E. Zlólkowska, S. R. Shenoy, B. R. O'keefe, J. B. Mcmahon, K. E. Palmer et al., Crystallographic, thermodynamic, and molecular modeling studies of the mode of binding of oligosaccharides to the potent antiviral protein griffthsion, Proteins, vol.67, pp.661-670, 2007.

T. Moulaei, S. R. Shenoy, B. Giomarelli, C. Thomas, J. B. Mcmahon et al., Monomerization of viral entry inhibitor griffithsin elucidates the relationship between multivalent binding to carbohydrates and anti-HIV activity, Structure, vol.18, pp.1104-1115, 2010.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

F. Zhang, M. M. Hoque, J. Jiang, K. Suzuki, M. Tsunoda et al., The characteristic structure of anti-HIV actinohivin in complex with three HMTG D1 chains of HIV-gp120, Chembiochem, vol.15, pp.2766-2773, 2014.

H. Debray, D. Decout, G. Strecker, G. Spik, and J. Montreuil, Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins, Eur. J. Biochem, vol.117, pp.41-55, 1981.

E. Fouquaert and E. J. Van-damme, Promiscuity of the Euonymus carbohydrate-binding domain, Biomecules, vol.2, pp.415-434, 2012.

L. M. Koharudin and A. M. Gronenborn, Structural basis of the anti-HIV activity of the cyanobacterial Oscillatoria agardhii agglutinin, Structure, vol.19, pp.1170-1181, 2011.

E. J. Van-damme, D. Smith, R. Cummings, and W. J. Peumans, Glycan arrays to decipher the specificity of plant lectins, Adv. Exp. Med. Biol, vol.705, pp.757-767, 2011.

J. Hirabayashi, Y. Arata, and K. Kasai, Reinforcement of frontal affinity chromatography for effective analysis of lectin-oligosaccharide interactions, J. Chromatogr. A, vol.890, pp.261-271, 2000.

W. J. Peumans and E. J. Van-damme, Lectins as plant defense proteins, Plant Physiol, vol.109, pp.347-352, 1995.

E. J. Van-damme, E. Fouquaert, N. Lannoo, G. Vanderborre, D. Schouppe et al., Novel concepts about the role of lectins in the plant cell, Adv. Exp. Med. Biol, vol.705, pp.271-294, 2011.

I. Sprawka, S. Golawska, T. Parzych, A. Golawski, P. Czerniewicz et al., Mechanism of entomotoxicity of the concanavalin A in Rhopalosiphum padi (Hemiptera: Aphididae), J. Insect Sci, vol.14, 2014.

P. Majumder, S. Banerjee, and S. Das, Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects, Glycoconj. J, vol.20, pp.525-530, 2004.

P. Majumder, H. A. Mondal, and S. Das, Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors, J. Agric. Food Chem, vol.53, pp.6725-6729, 2005.

P. T. Cristofoletti, F. A. De-sousa, Y. Rahbé, and W. R. Terra, Characterization of a membrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells. A major binding site for toxic mannose lectins, FEBS Lett, vol.273, pp.5574-5588, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00391293

E. Fitches, D. Wiles, A. E. Douglas, G. Hinchliffe, N. Audsley et al., The insecticidal activity of recombinant garlic lectins towards aphids, Insect Biochem. Mol. Biol, vol.38, pp.905-915, 2008.

N. Banerjee, S. Sengupta, A. Roy, P. Ghosh, K. Das et al., Functional anteration of a dimeric insecticvidal lectin to a monomeric antifungal protein correlated to its oligomeric status, PLoS ONE, vol.6, 2011.

A. Roy, S. Gupta, D. Hess, K. P. Das, and S. Das, Binding of insecticidal lectin Colocasia esculenta tuber agglutinin (CEA) to midgut receptors of Bemisia tabaci and Lipaphis erysimi provides clues to its insecticidal potential, Proteomics, vol.14, pp.1646-1659, 2014.

R. E. Down, A. M. Gatehouse, W. D. Hamilton, and J. A. Gatehouse, Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials, J. Insect Physiol, vol.42, pp.1035-1045, 1996.

Y. Zhou, Y. Tian, B. Wu, and K. Mang, Inhibition effect of transgenic tobacco plants expressing snowdrop lectin on the population development of Myzus persicae, Chin. J. Biotechnol, vol.14, pp.9-16, 1998.

R. E. Down, L. Ford, S. D. Woodhouse, G. M. Davison, M. E. Majerus et al., Tritrophic interactions between transgenic potato expressing snowdrop lectin (GNA), an aphid pest (peach-potato aphid; Myzus persicae (Sulz.) and a beneficial predator (2-spot ladybird, Adalia bipunctata L.). Transgenic Res, vol.12, pp.229-241, 2003.

S. Luo, D. Zhangsun, and K. Tang, Functional GNA expressed in Escherichia coli with high efficiency and its effect on Ceratovacuna lanigera Zehntner, Appl. Microbiol. Biotechnol, vol.69, pp.184-191, 2005.

R. E. Down, E. C. Fitches, D. P. Wiles, P. Corti, H. A. Bell et al., Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera: Aphidae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae), Pest Manag. Sci, vol.62, pp.77-85, 2006.

Z. Wang, K. Zhang, X. Sun, K. Tang, and J. Zhang, Enhancement of resistance to aphids by introducing the snowdrop lectin gene GNA into maize plants, J. Biosci, vol.30, pp.627-638, 2005.

P. A. Hogervorst, N. Ferry, A. M. Gatehouse, F. L. Wäckers, and J. Romeis, Direct effects of snowdrop lectin (GNA) on larvae of three aphid predators and fate of GNA after ingestion, J. Insect Physiol, vol.52, pp.614-624, 2006.

J. Miao, Y. Wu, W. Xu, L. Hu, Z. Yu et al., The impact of transgenic wheat expressing GNA (snowdrop lectin) on the aphids Sitobion avenae, Schizaphis graminum, and Rhopalosiphum padi, Environ. Entomol, vol.40, pp.743-748, 2011.

G. Qi, N. Lan, X. Ma, Z. Yu, and X. Zhao, Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternata agglutinin: Using recombinant endophytic fungi to control aphids, J. Appl. Microbiol, vol.110, pp.1314-1322, 2011.

Y. Xiao, K. Wang, R. Ding, H. Zhang, P. Di et al., Transgenic tetraploid Isatis indigotica expressing Bt Cry1Ac and Pinellia ternata agglutinin showed enhanced resistance to moths and aphids, Mol. Biol. Rep, vol.39, pp.485-491, 2012.

X. Duan, Q. Hou, G. Liu, X. Pang, Z. Niu et al., Expression of Pinellia pedatisecta lectin gene in transgenic wheat enhances resistance to wheat aphids, Molecules, vol.23, 2018.

S. Javaid, I. Amin, G. Jander, Z. Mukhtar, N. A. Saeed et al., A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters, Sci. Rep, vol.6, 2016.

D. Chakraborti, A. Sarkar, H. A. Mondal, D. Schuermann, B. Hohn et al., Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect, Plant Cell Rep, vol.27, pp.1623-1633, 2008.

D. Chakraborti, A. Sarkar, H. A. Mondal, and S. Das, Tissue expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora, Transgenic Res, vol.18, pp.529-544, 2009.

A. Sadeghi, S. Broeders, H. De-greve, J. P. Hernalsteens, W. J. Peumans et al., Expression of garlic leaf lectin under the control of the phloem-specific Asus1 from Arabidopsis thaliana protects tobacco plants against the tobacco aphid (Myzus nicotianae), Pest Manag. Sci, vol.63, pp.1215-1223, 2007.

J. Yao, X. Zhao, H. Qi, B. Wan, F. Chen et al., Transgenic tobacco expressing an Arisaema heterophyllum agglutinin gene displays enhanced resistance to aphids, Can. J. Plant Sci, vol.84, pp.785-790, 2004.

G. Kai, Q. Ji, Y. Lu, Z. Qian, and L. Cui, Expression of Monstera deliciosa agglutinin (MDA) in tobacco confers resistance to peach-potato aphids, Integr. Biol, vol.4, pp.937-944, 2012.

A. Atalah, B. Smagghe, G. Van-damme, and E. J. , Orysata, a jacalin-related lectin from rice, could protect plants against biting-chewing and piercing-sucking insects, Plant Sci, pp.221-222, 2014.

S. H. Ye, S. Chen, F. Zhang, W. Wang, Q. Tian et al., Transgenic tobacco expressing Zephyranthes grandiflora agglutinin confers enhanced resistance to aphids, Appl. Biochem. Biotechnol, vol.158, pp.615-630, 2009.

T. Chang, L. Chen, S. Chen, H. Cai, X. Liu et al., Transformation of tobacco with genes encoding Helianthus tuberosus agglutinin (HTA) confers resistance to peach-potato aphid

, Transgenic Res, vol.12, pp.607-614, 2003.

N. Sauvion, C. Nardon, G. Febvay, A. M. Gatehouse, and Y. Rahbé, Binding of the insecticidal lectin concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells, J. Insect Physiol, vol.50, pp.1137-1150, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01927470

S. Shahidi-noghabi, E. J. Van-damme, K. Mahdian, and G. Smagghe, Entomotoxic action of Sambucus nigra agglutinin I in Acyrthosiphon pisum aphids and Spodoptera exigua caterpillars through caspase-3-like-dependent apoptosis, Arch. Insect. Biochem. Physiol, vol.75, pp.207-220, 2010.

E. J. Van-damme, A. Barre, P. Rougé, and W. J. Peumans, Cytoplasmic/nuclear plant lectins: A new story, Trends Plant Sci, vol.9, pp.484-489, 2004.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

N. Lannoo and E. J. Van-damme, Nucleocytoplasmic plant lectins, Biochim. Biophys. Acta, vol.1800, pp.190-201, 2010.

A. Delporte, S. Van-holle, N. Lannoo, and E. J. Van-damme, The tobacco lectin, prototype of the family of Nictaba-related proteins, Curr. Protein Pept. Sci, vol.16, pp.5-16, 2015.

S. Van-holle, P. Rougé, and E. J. Van-damme, Evolution and structural diversification of Nictaba-like genes in food crops with focus on soybean (Glycine max), Ann. Bot, vol.119, pp.901-914, 2017.

E. Fouquaert, W. J. Peumans, T. T. Vandekerckhove, M. Ongenaert, and E. J. Van-damme, Proteins with an Euonymus-like domain are ubiquitous in embryophyta, BMC Plant Biol, vol.9, 2009.

L. Esch and U. Schaffrath, An update on jacalin-like lectins and their role in plant defense, Int. J. Mol. Sci, vol.18, p.1592, 2017.

N. Lannoo, W. J. Peumans, E. V. Pamel, R. Alvarez, T. C. Xiong et al., Localization and in vitro binding studies suggest that the cytoplasmic/nuclear tobacco lectin can interact in situ with high mannose and complex N-glycans, FEBS Lett, vol.580, pp.6329-6337, 2006.

A. Atalah, B. Fouquaert, E. Vanderschaeghe, D. Proost, P. Balzarini et al., Expression analysis of the nucleocytoplasmic lectin 'Orysata' from rice in Pichia pastoris, FEBS J, vol.278, pp.2064-2079, 2011.

A. Atalah, B. Vanderschaeghe, D. Bloch, Y. Proost, P. Plas et al., Characterization of a type D1A EUL-related lectin from rice expressed in Pichia pastoris, Biol. Chem, vol.395, pp.413-424, 2014.

S. Van-holle and E. J. Van-damme, Signaling through plant lectins: Modulation of plant immunity and beyond, Biochem. Soc. Trans, vol.46, pp.217-233, 2018.

J. Van-hove, G. De-jaeger, N. De-winne, Y. Guisez, and E. J. Van-damme, The Arabidopsis lectin EULS3 is involved in stomatal closure, Plant Sci, vol.238, pp.312-322, 2015.

S. Van-holle, G. Smagghe, and E. J. Van-damme, Overexpression of Nictaba-like lectin genes from Glycine max confers tolerance toward Pseudomonas syringae infection, aphid infestation and salt stress in transgenic Arabidopsis plants, Front. Plant Sci, 1590.

L. Eggermont, K. Stefanowicz, and E. J. Van-damme, Nictaba homologs from Arabidopsis thaliana are involved in plant stress responses. Front, Plant Sci, 2018.

G. B. Stewart-jones, C. Soto, T. Lemmin, G. Y. Chuang, A. Druz et al., Trimeric HIV-en structures define glycan shields from clades, vol.165, pp.813-826, 2016.

J. Lifson, S. Coutré, E. Huang, and E. Engleman, Role of evelope glycoprotein carbohydrate in human immunodeficiency virus (HIV) infectivity and virus-induced cell fusion, J. Exp. Med, vol.164, pp.2101-2106, 1986.

W. E. Robinson, . Jr, D. C. Montefiori, and W. M. Mitchell, Evidence that mannosyl residues are involved in human immunodeficiency virus type 1 (HIV-1) pathogenesis, AIDS Res. Hum. Retrovir, vol.3, pp.165-182, 1987.

W. E. Müller, K. Renneisen, M. H. Kreuter, H. C. Schröder, and I. Winkler, The D-mannose-specific lectin from Gerardia savaglia blocks binding to human immunodeficiency virus type I to H9 cells and human lymphocytes in vitro, J. Acquir. Immune Defic. Syndr, vol.1, pp.453-458, 1988.

J. E. Hansen, C. M. Nielsen, C. Nielsen, P. Heegaard, L. R. Mathiesen et al., Correlation between carbohydrates structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins, AIDS, vol.3, pp.635-641, 1989.

L. Hammar, S. Eriksson, and B. Morein, Human immunodeficiency virus glycoproteins: Lectin binding properties, AIDS Res. Hum. Retrovir, vol.5, pp.495-506, 1989.

C. Houlès-astoul, W. J. Peumans, E. J. Van-damme, and P. Rougé, Accessibility of the high-mannose glycans of glycoprotein gp120 from human immunodeficiency virus type 1 probed by in vitro interaction with mannose-binding lectins, Biochem. Biophys. Res. Commun, vol.274, pp.455-460, 2000.

M. R. Boyd, K. R. Gustafson, J. B. Mcmahon, R. H. Shoemaker, B. R. O'keefe et al., Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development, Antimicrob. Agents Chemother, vol.41, pp.1521-1530, 1997.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

B. Dey, D. L. Lerner, P. Lusso, M. R. Boyd, J. H. Elder et al., Multiple antiviral activities of cyanovirin-N: Blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses, J. Virol, vol.74, pp.4562-4569, 2000.

C. A. Bewley, M. Cai, S. Ray, R. Ghirlando, M. Yamaguchi et al., New carbohydrate specificity and HIV-1 fusion bloking activity of the cyanobacterial protein MVL: NMR, ITC and sedimentation equilibrium studies, J. Mol. Biol, vol.339, pp.901-914, 2004.

G. Férirn, D. Huskens, S. Noppen, L. M. Koharudin, A. M. Gronenborn et al., Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family, J. Antimicrob. Chemother, vol.69, pp.2746-2758, 2014.

H. R. Bokesch, B. R. O'keefe, T. C. Mckee, L. K. Pannell, G. M. Patterson et al., , p.2

J. Turpin, K. Watson, R. W. Buckheit, and . Jr, A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium, Biochemistry, vol.42, pp.2578-2584, 2003.

J. E. Robinson, D. Holton, J. Liu, H. Mcmurdo, A. Murciano et al., A novel enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to HIV-1 envelope glycoproteins based on immobilization of viral glycoproteins in microtiter wells coated with concanavalin A, J. Immunol. Methods, vol.132, pp.63-71, 1990.

L. Gattegno, A. Ramdani, T. Jouault, L. Saffar, and J. C. Gluckman, Lectin-carbohydrate interactions and infectivity of human immunodeficiency virus type 1 (HIV-1), AIDS Res. Hum. Retrovir, vol.8, pp.27-37, 1992.

T. K. Hart, A. M. Klinkner, J. Ventre, and P. J. Bugelski, Morphometric analysis of envelope glycoprotein gp120 distribution on HIV-1 virions, J. Histochem. Cytochem, vol.41, pp.265-271, 1993.

R. Pal, A. Devico, S. Rittenhouse, and M. G. Sarngadharan, Conformational perturbation of the envelopr glycoprotein gp120 of human immubodeficiency virus type 1 by soluble CD4 and the lectin succinyl Con A. Virology, vol.194, pp.833-837, 1993.

J. C. Yeh, J. R. Seals, C. I. Murphy, H. Van-halbeek, and R. D. Cummings, Site-specific N-glycosylation and oligosaccharide structures of recombinant HIV-1 gp120 derived from a baculovirus expression system, Biochemistry, vol.32, pp.11087-11099, 1993.

G. J. Gram, A. Hemming, A. Bolmstedt, B. Jansson, S. Olofsson et al., Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4, Arch. Virol, vol.139, pp.253-261, 1994.

J. J. Gu, J. V. Harriss, K. Ozato, and P. D. Gottlieb, Induction by concanavalin A of specific mRNAs and cytolytic function in a CD8-positive T cell hybridoma, J. Immunol, vol.153, pp.4408-4417, 1994.

M. Akashi, T. Niikawa, T. Serizawa, T. Hayakawa, and M. Baba, Capture of HIV-1 gp120 and virions by lectin-immobilized polystyrene nanospheres, Bioconj. Chem, vol.9, pp.50-53, 1998.

T. Hayakawa, M. Kawamura, M. Okamoto, M. Baba, T. Niikawa et al., Concanavalin A-immobilized polystyrene nanospheres capture HIV-1 vririons and gp120: Potential approach towards prevention of viral transmission, J. Med. Virol, vol.56, pp.327-331, 1998.

T. B. No, Y. S. Chan, C. C. Ng, and J. H. Wong, Purification and characterization of a lectin from green split peas (Pisum sativum), Appl. Biochem. Biotechnol, vol.177, pp.1374-1385, 2015.

J. Balzarini, J. Neyts, D. Schols, M. Hosoya, E. Van-damme et al., The mannose-specific lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)nspecific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro, Antivir. Res, vol.18, pp.191-207, 1992.

J. Balzarini, D. Schols, J. Neyts, E. Van-damme, W. J. Peumans et al., -3)-and ?-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro, Antimicrob. Agents Chemother, vol.35, issue.1, pp.410-416, 1991.

N. Mahmood and A. J. Hay, An ELISA utilizing immobilized snowdrop lectin GNA for the detection of envelope glycoproteins of HIV and SIV, J. Immunol. Methods, vol.151, pp.9-13, 1992.

G. Gilljam, Envelope glycoproteins of HIV-1, HIV-2, and SIV purified with Galanthus nivalis agglutinin induce strong immune responses, AIDS Res. Hum. Retrovir, vol.9, pp.431-438, 1993.

L. Hammar, I. Hirsch, A. Machado, J. De-mareuil, J. Baillon et al., Lectin effects on HIV-1 infectivity, Ann. N. Y. Acad. Sci, vol.724, pp.166-169, 1994.

L. Hammar, I. Hirsch, A. A. Machado, J. De-mareuil, J. G. Baillon et al., Lectin-mediated effects on HIV type 1 infection in vitro, AIDS Res. Hum. Retroviruses, vol.11, pp.87-95, 1995.

J. Balzarini, S. Hatse, K. Vermeire, K. Princen, S. Aquaro et al., Mannose-specific plant lectins from the amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection, Antimicrob. Agents Chemother, vol.48, pp.3858-3870, 2004.

B. E. Weiler, H. C. Schröder, V. Stefanovich, D. Stewart, J. M. Forrest et al., Sulphoevernan, a polyanionic polysaccharide, and narcissus lectin potently inhibit human immunodeficiency virus infection by binding to viral envelope protein, J. Gen. Virol, vol.71, pp.1957-1963, 1990.

Z. Gao, B. Zheng, W. Wang, Q. Li, and Q. Yuan, Cloning and functional characterization of a GNA-like lectin from Chinese narcissus (Narcissus tazetta var. Chinensis Roem), Physiol. Plant, vol.142, pp.193-204, 2011.

J. An, J. Z. Liu, C. F. Wu, J. Li, L. Dai et al., Anti-HIV I/II activity and molecular cloning of a novel mannose/sialic acid-binding lectin from rhizome of Polygonatum cyrtonema Hua, Acta Biochim. Biophys. Sin. (Shanghai), vol.38, pp.70-78, 2006.

M. D. Swanson, H. C. Winter, I. J. Goldstein, and D. M. Markovitz, A lection isolated from bananas is a potent inhibitor of HIV replication, J. Biol. Chem, vol.285, pp.8646-8655, 2010.

B. Hoorelbeke, E. J. Van-damme, P. Rougé, D. Schols, K. Van-laethem et al., Differences in the mannose oligomer specificities of the closely related lectins from Galanthus nivalis and Zea mays strongly determine their eventual anti-HIV activity, Retrovirology, vol.8, issue.10, 2011.

X. Huang, W. Jin, G. E. Griffin, R. J. Shattock, and Q. Hu, Removal of two high-mannose N-linked glycans on gp120 renders human immunodeficiency virus 1 largely resistant to the carbohydrate-binding agent griffithsin, J. Gen. Virol, vol.92, pp.2367-2373, 2011.

M. Hirahyama, H. Shibata, K. Imamura, T. Sakaguchi, and K. Hori, High-mannose specific lectin and its recombinants from a carrageenophyta Kappaphycus alvarezii represent a potent anti-HIV activity through high-affinity binding to the viral envelope glycoprotein gp120, Mar. Biotechnol, vol.18, pp.215-231, 2016.

M. Witvrouw, V. Fikkert, A. Hantson, C. Pannecouque, B. R. O'keefe et al., Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A, J. Virol, vol.79, pp.7777-7784, 2005.

J. Balzarini, K. Van-laethem, W. J. Peumans, E. J. Van-damme, A. Bolmstedt et al., Mutational pathways, resistance profile, and side effects of cyanovirin relative to human immunodefiociency virus type 1 strains with N-glycan deletions in their gp120 envelopes, J. Virol, vol.80, pp.8411-8421, 2006.

J. Balzarini, K. Van-laethem, S. Hatse, K. Vermeire, E. De-clercq et al., Profile of resistance of human ommunodeficiency virus to mannose-specific plant lectins, J. Virol, vol.78, pp.10617-10627, 2004.

M. Pancera, T. Zhou, A. Druz, I. S. Georgiev, C. Soto et al., Structure and immune recognition of trimeric prefusion HIV1 Env, Nature, vol.514, pp.455-461, 2014.

J. Balzarini, K. Van-laethem, S. Hatse, M. Froeyen, W. Peumans et al., Carbohydrate-binding agents cause deletions of highly conserved glycosylation sites in HIV gp120: A new therapeutic concept to hit the Achilles heel of HIV, J. Biol. Chem, vol.280, pp.41005-41014, 2005.

J. Balzarini, K. Van-laethem, S. Hatse, M. Froeyen, E. Van-damme et al., Marked depletion of glycosylation sites of HIV-1 gp120 under selective pressure by the mannose-specific plant lectins of Hippeastrum hybrid. and Galanthus nivalis, Mol. Pharemacol, vol.67, pp.1556-1565, 2005.

J. Balzarini, Carbohydrate-binding agents: A potential future cornerstone for the chemotherapy of enveloped viruses?, Antivir. Chem. Chemother, vol.18, pp.1-11, 2007.

J. Balzarini, The ?(1,2)-mannosidase I inhibitor 1-deoxymannojirimycin potentiates the antiviral activity of carbohydrate-binding agents against wild-type and mutant HIV-1 strains containing glycan deletions in gp120, FEBS Lett, vol.581, pp.2060-2064, 2007.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

G. Férir, D. Huskens, K. E. Palmer, D. M. Boudreaux, M. D. Swanson et al., Combinations of griffithsin with other carbohydrate-binding agents demonstrate superior activity against HIV type 1, HIV type 2, and selected carbohydrate-ding agent-resistant HIV type 1 strains, AIDS Res. Hum. Retrovir, vol.28, pp.1513-1523, 2012.

Y. W. Lam and T. B. Ng, A monomeric mannose-binding lectin from inner shhots of the edible chive (Allium tuberosum), J. Protein Chem, vol.20, pp.361-366, 2001.

H. X. Wang and T. B. Ng, Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases, Planta Med, vol.67, pp.669-672, 2001.

M. Pollicita, D. Schols, S. Aquaro, W. J. Peumans, E. J. Van-damme et al., Carbohydrate-binding agents (CBAs) inhibit HIV-1 infection in human primary monocyte-derived macrophages (MDMs) and efficienctly prevent MDM-directed viral capture and subsequent trabsmission to CD4+ T lymphocytes, Virology, vol.370, pp.382-391, 2008.

K. B. Alexandre, E. S. Gray, H. Mufhandu, J. B. Mcmahon, E. Chakauya et al., The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4(+) cells, Virology, vol.423, pp.175-186, 2012.

B. Hoorelbeke, J. Xue, P. J. Liwang, and J. Balzarini, Role of the carbohydrate-binding sites of griffithsin in the prevention of DC-SIGN-mediated capture and transmission of HIV-1, PLoS ONE, vol.8, 2013.

C. A. Mitchell, K. Ramessar, and B. R. O'keefe, Antiviral lectins: Selective inhibitors of viral entry, Antivir. Res, vol.142, pp.37-54, 2017.

V. Lafont, J. Dornand, L. Covassin, J. P. Liautard, and J. Favero, The lectin jacalin triggers CD4-mediated lymphocyte signaling by binding CD4 through a protein-protein interaction, J. Leukoc. Biol, vol.59, pp.691-696, 1996.

S. C. Gordts, M. Renders, G. Férir, D. Huskens, E. J. Van-damme et al., GlcNAc-binding lectins with unique antiviral activity profiles, J. Antimicrob. Chemother, vol.70, pp.1674-1685, 2015.

G. Poiroux, A. Barre, E. J. Van-damme, H. Benoist, and P. Rougé, Plant lectins targeting O-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy, Int. J. Mol. Sci, vol.18, p.1232, 2017.

W. W. Li, J. Y. Yu, H. L. Xu, and J. K. Bao, Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics, Biochem. Biophys. Res. Commun, vol.414, pp.282-286, 2011.

L. Wu and J. K. Bao, Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins, Glycoconj. J, vol.30, pp.269-279, 2013.

Q. L. Jiang, S. Zhang, M. Tian, S. Y. Zhang, T. Xie et al., Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy, Cell Prolif, vol.48, pp.17-28, 2015.

F. Islam, V. Gopalan, A. K. Lam, and S. R. Kabir, Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines, Int. J. Biol. Macromol, vol.117, pp.1050-1057, 2018.

S. R. Kabir, M. M. Nabi, A. Hague, R. Uz-zaman, Z. H. Mahmud et al., Pea lectin inhibits growth of Ehrlich ascites carcinoma cells by inducing apoptosis and G2/M cell cycle arrest in vivo in mice, Phytomedicine, vol.20, pp.1288-1296, 2013.

A. K. Asaduzzaman, I. Hasan, A. Chakrabortty, S. Zaman, S. S. Islam et al., Moringa oleifera seed lectin inhibits Ehrlich ascites carcinoma cell growth by inducing apoptosis through the regulation of Bak and NF-kB gene expression, Int. J. Biol. Macromol, vol.107, pp.1936-1944, 2018.

L. De-andrade-luz, F. A. Rossato, R. A. Costa, T. H. Napoleão, P. M. Paiva et al., Cytotoxicity of the coagulant Moringa oleifera lectin (cMOL) to B16-F10 melanoma cells, Toxicol In Vitro, vol.44, pp.94-99, 2017.

A. C. Gondim, I. Romero-canelón, E. H. Sousa, C. A. Blindauer, J. S. Butler et al., The potent anti-cancer activity of Dioclea lasiocarpa lectin, J. Inorg. Biochem, vol.175, pp.179-189, 2017.

, Int. J. Mol. Sci, vol.20, p.254, 2019.

V. V. Luan, Y. Qian, X. Ni, T. K. Chandra, Y. Xia et al., Polygonatum odoratum lectin promotes BECN1 expression and induces autophagy in malignant melanoma by regulation of miR1290, vol.10, pp.4569-4577, 2017.

L. Wu, T. Liu, Y. Xiao, X. Li, Y. Zhu et al., Polygonatum odoratum lectin induces apoptosis and autophagy by regulation of microRNA-1290 and microRNA-15a-3p in human lung adenocarcinoma A549 cells, Int. J. Biol. Macromol, vol.85, pp.217-226, 2016.

L. Ouyang, Y. Chen, X. Y. Wang, R. F. Lu, S. Y. Zhang et al., Polygonatum odoratum lectin induces apoptosis and autophagy via targeting EGFR-mediated Ras-Raf-MEK-ERK pathway in human MCF-7 breast cancer cells, Phytomedicine, vol.21, pp.1658-1665, 2014.

C. Li, J. Chen, B. Lu, Z. Shi, H. Wang et al., Molecular switch of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells, PLoS ONE, vol.9, 2014.

B. Liu, B. Zhang, M. W. Min, H. J. Bian, L. F. Chen et al., Induction of apoptosis by Polygonatum odoratum lectin and its molecular mechanisms in murine fibrosarcoma L929 cells, Biochim. Biophys. Acta, vol.1790, pp.840-844, 2009.

S. Naik, R. S. Rawat, S. Khandai, M. Kumar, S. S. Jena et al., Biochemical characterisation of lectin from Indian hyacinth plant bulbs with potential inhibitory action against human cancer cells, Int. J. Biol. Macromol, vol.105, pp.1349-1356, 2017.

B. R. Sindhura, P. Hegde, V. B. Chachadi, S. R. Inamdar, and B. M. Swamy, High mannose N-glycan binding lectin from Remusatia vivipara (RVL) limits cell growth, motility and invasiveness of human breast cancer cells, Biomed. Pharmacother, vol.93, pp.654-665, 2017.

T. Liu, L. Wu, D. Wang, H. Wang, J. Chen et al., Role of reactive oxygen species-mediated MAPK and NF-kB activation in Polygonatum cyrtonema lectin-induced apoptosis and autophagy in human lung carcinoma A549 cells, J. Biochem, vol.160, pp.315-324, 2016.

B. Liu, J. M. Wu, J. Li, J. J. Liu, W. W. Li et al., Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras-Raf and PI3K-Akt signaling pathways, Biochimie, vol.92, 1934.

B. Liu, Y. Cheng, H. J. Bian, and J. Bao, Molecular mechanisms of Polygonatum cyrtonema lectin-induced apoptosis and autophagy in cancer cells, Autophagy, vol.5, pp.253-255, 2009.

B. Liu, Y. Cheng, B. Zhang, H. J. Bian, and J. Bao, Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway, Cancer Lett, vol.275, pp.54-60, 2009.

L. X. Feng, P. Sun, T. Mi, M. Liu, W. Liu et al., Agglutinin isolated from Arisema heterophyllum Blume induces apoptosis and autophagy in A549 cells through inhibiting PI3K:Akt pathway and inducing ER stress, Clin. J. Nat. Med, vol.14, pp.856-864, 2016.

Y. S. Chan, H. Yu, L. Xia, and T. B. Ng, Lectin from green speckled lentil seeds (Lens culinaris) triggered apoptosis in nasopharyngeal carcinoma cell lines, Chin. Med, vol.10, 2015.

S. Kumar, K. Jitendra, K. Singh, V. Kappor, M. Sinha et al., Biological properties and characterization of ASL50 protein from aged Allium sativum bulbs

, Appl. Biochem. Biotechnol, vol.176, 1914.

Z. Shi, J. Chen, C. Y. Li, N. An, Z. J. Wang et al., Antitumor effects of concanavalin A and Sophora flavescens lectin in vitro and in vivo, Acta Pharmacol. Sin, vol.35, pp.248-256, 2014.

G. V. Faheina-martins, A. L. Da-silveira, B. C. Cavalcanti, M. V. Ramos, M. O. Moraes et al., Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines, Toxicol, vol.26, pp.1161-1169, 2012.

J. Pratt, R. Roy, and B. Annabi, Concanavalin-A-induced autophagy biomarkers requires membrane type-1 metalloproteinase intracellular signaling in glioblastoma cells, Glycobiology, vol.22, pp.1245-1255, 2012.

A. R. Amin, V. S. Thakur, K. Gupta, M. W. Jackson, H. Harada et al., Restoration of p53 functions protects cells from concanavalin A-induced apoptosis, Mol. Cancer Ther, vol.9, pp.471-479, 2010.

B. Liu, M. W. Min, and J. K. Bao, Induction of apoptosis by concanavalin A ans its molecular mechanisms in cancer cells, Autophagy, vol.5, pp.432-433, 2009.

F. O. Silva, P. N. Santos, E. O. Figueirôa, C. M. De-melo, J. K. De-andradre-lemoine-neves et al., Antiproliferative effect of Canavalia brasiliensis lectin on B16F10 cells, Res. Vet. Sci, vol.96, pp.276-282, 2014.

W. Zhou, Y. Gao, S. Xu, Z. Yang, and T. Xu, Purification of a mannose-binding lectin Pinellia ternata agglutinin and its induction of apoptosis in Bel-7404 cells, Protein Expr. Purif, vol.93, pp.11-17, 2014.

K. Hayashi, P. Walde, T. Miyazaki, K. Sakayama, A. Nakamura et al., Active targeting to osteosarcoma cells and apoptotic cell death induction by the novel lectin Eucheuma serra agglutinin isolated from a marine red alga, J. Drug Deliv, 2012.

Y. Fukuda, T. Sugahara, M. Ueno, Y. Fukuta, Y. Ochi et al., The anti-tumor effect of Eucheuma serra agglutinin on colon cancer cells in vitro and in vivo, Anticancer Drugs, vol.17, pp.943-947, 2006.

T. Yau, X. Dan, C. C. Ng, and T. B. Ng, Lectins with potential for anti-cancer therapy, Molecules, vol.20, pp.3791-3810, 2015.

L. E. Estrada-martínez, U. Moreno-celis, R. Cervantes-jiménez, R. A. Ferriz-martínez, A. Blanco-labra et al., Plant lectins as medical tools against digestive system cancers, Int. J. Mol. Sci, vol.18, 1403.

I. Lagarda-dias, A. M. Guzman-partida, and L. Vazquez-moreno, Legume lectins: Proteins with diverse applications, Int. J. Mol. Sci, vol.18, p.1242, 2017.

G. Poiroux, A. Barre, P. Rougé, and H. Benoist, Targeting glycosylation aberrations to improve the efficiency of cancer phototherapy, Curr. Cancer Drug Targets, 2018.

K. O. François and J. Balzarini, Potential of carbohydrate-binding agents as therapeutics against enveloped viruses, Mol. Res. Rev, vol.32, pp.349-387, 2012.

A. Mahalingam, A. R. Geonnotti, J. Balzarini, and P. F. Kiser, Activity and safety of synthetic lectins based on benzoboroxole-functionalized polymers for inhibition of HIV entry, Mol. Pharm, vol.8, pp.2465-2475, 2011.