C. Network, J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. Shaw et al., The Cancer Genome Atlas Pan-Cancer analysis project, Nat. Genet, vol.45, pp.1113-1120, 2013.

J. Zhang, J. Baran, A. Cros, J. M. Guberman, S. Haider et al., International Cancer Genome Consortium Data Portal-a one-stop shop for cancer genomics data, Database, p.26, 2011.

R. Krempel, P. Kulkarni, A. Yim, U. Lang, B. Habermann et al., Integrative analysis and machine learning on cancer genomics data using the Cancer Systems Biology Database (CancerSysDB), BMC Bioinformatics, vol.19, p.156, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02017637

K. Klonowska, K. Czubak, M. Wojciechowska, L. Handschuh, A. Zmienko et al., Oncogenomic portals for the visualization and analysis of genome-wide cancer data, Oncotarget, vol.7, pp.176-192, 2016.

I. Papatheodorou, N. A. Fonseca, M. Keays, Y. A. Tang, E. Barrera et al.,

S. W. Taylor, E. Fahy, B. Zhang, G. M. Glenn, D. E. Warnock et al., Characterization of the human heart mitochondrial proteome, Nat. Biotechnol, vol.21, pp.281-286, 2003.

H. Gonczarowska-jorge, R. P. Zahedi, and A. Sickmann, The proteome of baker's yeast mitochondria, Mitochondrion, vol.33, pp.15-21, 2017.

A. A. Kolesnikov and E. S. Gerasimov, Diversity of mitochondrial genome organization, Biochemistry Mosc, vol.77, pp.1424-1435, 2012.

B. M. Hällberg and N. Larsson, Making proteins in the powerhouse, Cell Metab, vol.20, pp.226-240, 2014.

D. Catalano, F. Licciulli, A. Turi, G. Grillo, C. Saccone et al., MitoRes: a resource of nuclear-encoded mitochondrial genes and their products in Metazoa, BMC Bioinformatics, vol.7, p.36, 2006.

A. C. Smith and A. J. Robinson, MitoMiner v3.1, an update on the mitochondrial proteomics database, Nucleic Acids Res, vol.44, pp.1258-1261, 2016.

N. Godin and J. Eichler, The Mitochondrial Protein Atlas: a database of experimentally verified information on the human mitochondrial proteome, J. Comput. Biol, vol.24, pp.906-916, 2017.

D. Cotter, P. Guda, E. Fahy, and S. Subramaniam, MitoProteome: mitochondrial protein sequence database and annotation system, Nucleic Acids Res, vol.32, pp.463-467, 2004.

C. Guda, E. Fahy, and S. Subramaniam, MITOPRED: a genome-scale method for prediction of nucleus-encoded mitochondrial proteins, Bioinformatics, vol.20, pp.1785-1794, 2004.

A. Izzo, N. Mollo, M. Nitti, S. Paladino, G. Calì et al., Mitochondrial dysfunction in down syndrome: molecular mechanisms and therapeutic targets, Mol. Med, vol.24, pp.2-8, 2018.

M. Bostock, V. Ogievetsky, and J. Heer, IEEE Trans. Visual. Comput. Graph, vol.17, pp.2301-2309, 2011.

I. Kühl, M. Miranda, I. Atanassov, I. Kuznetsova, Y. Hinze et al., Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals, Elife, vol.6, p.1494, 2017.

Y. Liu, C. Borel, L. Li, T. Müller, E. G. Williams et al., Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells, Nat. Commun, vol.8, p.1212, 2017.

A. Letourneau, F. A. Santoni, X. Bonilla, M. R. Sailani, D. Gonzalez et al., Domains of genome-wide gene expression dysregulation in Down's syndrome, Nature, vol.508, pp.345-350, 2014.

K. D. Sullivan, H. C. Lewis, A. A. Hill, A. Pandey, L. P. Jackson et al., , 2016.

M. L. Spletter, C. Barz, A. Yeroslaviz, X. Zhang, S. B. Lemke et al., A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle, Elife, vol.7, p.1361, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874574

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, pp.550-521, 2014.

A. Chowdhury, A. Aich, G. Jain, K. Wozny, C. Lüchtenborg et al., Defective Mitochondrial Cardiolipin Remodeling Dampens HIF-1? Expression in Hypoxia, Cell Rep, vol.25, pp.561-570, 2018.

G. Garipler, N. Mutlu, N. A. Lack, and C. D. Dunn, Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.1473-1478, 2014.

J. G. Fleischer, R. Schulte, H. H. Tsai, S. Tyagi, A. Ibarra et al., Predicting age from the transcriptome of human dermal fibroblasts, 2018.

, Genome Biol, vol.19, pp.221-228

W. Huang, M. A. Carbone, M. M. Magwire, J. A. Peiffer, R. F. Lyman et al., Genetic basis of transcriptome diversity in Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.6010-6019, 2015.

T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim et al., NCBI GEO: archive for functional genomics data sets-update, Nucleic Acids Res, vol.41, pp.991-995, 2013.

S. Stingele, G. Stoehr, K. Peplowska, J. Cox, M. Mann et al., Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells, Mol. Syst. Biol, vol.8, p.608, 2012.

M. Dürrbaum, A. Y. Kuznetsova, V. Passerini, S. Stingele, G. Stoehr et al., Unique features of the transcriptional response to model aneuploidy in human cells, BMC Genomics, vol.15, p.139, 2014.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet Journal, vol.17, pp.10-12, 2011.

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley et al., TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, p.36, 2013.

C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim et al., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc, vol.7, pp.562-578, 2012.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

A. S. Divakaruni, A. Paradyse, D. A. Ferrick, A. N. Murphy, and M. Jastroch, Analysis and interpretation of microplate-based oxygen consumption and pH data, Methods Enzymol, vol.547, pp.309-354, 2014.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, pp.671-675, 2012.

J. C. Yen, F. J. Chang, and S. Chang, A new criterion for automatic multilevel thresholding, IEEE Trans. Image Process, vol.4, pp.370-378, 1995.

A. P. Leonard, R. B. Cameron, J. L. Speiser, B. J. Wolf, Y. K. Peterson et al., Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning, Biochim. Biophys. Acta, vol.1853, pp.348-360, 2015.

M. Morgenstern, S. B. Stiller, P. Lübbert, C. D. Peikert, S. Dannenmaier et al., Definition of a high-confidence mitochondrial proteome at quantitative scale, Cell Rep, vol.19, pp.2836-2852, 2017.

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res, vol.45, pp.353-361, 2017.

. Ncbi-resource-coordinators, Database resources of the national center for biotechnology information, Nucleic Acids Res, vol.46, pp.8-13, 2018.

J. Thurmond, J. L. Goodman, V. B. Strelets, H. Attrill, L. S. Gramates et al., FlyBase 2.0: the next generation, Nucleic Acids Res, vol.47, pp.759-765, 2019.

J. M. Cherry, E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley et al., Saccharomyces Genome Database: the genomics resource of budding yeast, Nucleic Acids Res, vol.40, pp.700-705, 2012.

G. Stelzer, N. Rosen, I. Plaschkes, S. Zimmerman, M. Twik et al., The GeneCards suite: from gene data mining to disease genome sequence analyses, Curr. Protoc. Bioinformatics, vol.54, 2016.

T. Consortium and . Uniprot, UniProt: the universal protein knowledgebase, Nucleic Acids Res, vol.45, pp.158-169, 2017.

J. Kuan and M. H. Saier, The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships, Crit. Rev. Biochem. Mol. Biol, vol.28, pp.209-233, 1993.

D. Szklarczyk, J. H. Morris, H. Cook, M. Kuhn, S. Wyder et al., The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible, Nucleic Acids Res, vol.45, pp.362-368, 2017.

, , 2019.

J. Quackenbush, Microarray data normalization and transformation, Nat. Genet, vol.32, pp.496-501, 2002.

R. J. Deberardinis and N. S. Chandel, Fundamentals of cancer metabolism, Sci. Adv, vol.2, p.1600200, 2016.

I. Bratic and A. Trifunovic, Mitochondrial energy metabolism and ageing, Biochim. Biophys. Acta, vol.1797, pp.961-967, 2010.

S. Bione, P. D'adamo, E. Maestrini, A. K. Gedeon, P. A. Bolhuis et al., A novel X-linked gene, G4.5. is responsible for Barth syndrome, Nat. Genet, vol.12, pp.385-389, 1996.

N. Ikon and R. O. Ryan, Barth syndrome: connecting cardiolipin to cardiomyopathy, Lipids, vol.52, pp.99-108, 2017.

N. Ikon and R. O. Ryan, Cardiolipin and mitochondrial cristae organization, Biochim. Biophys. Acta Biomembr, vol.1859, pp.1156-1163, 2017.

A. Conesa, P. Madrigal, S. Tarazona, D. Gomez-cabrero, A. Cervera et al., A survey of best practices for RNA-seq data analysis, Genome Biol, vol.17, pp.13-19, 2016.

A. Conesa, P. Madrigal, S. Tarazona, D. Gomez-cabrero, A. Cervera et al., Erratum to: A survey of best practices for RNA-seq data analysis, Genome Biol, vol.17, pp.181-182, 2016.

A. Mckenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res, vol.20, pp.1297-1303, 2010.

P. Vreken, F. Valianpour, L. G. Nijtmans, L. A. Grivell, B. Plecko et al., Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome, Biochem. Biophys. Res. Commun, vol.279, pp.378-382, 2000.

M. Schlame, Cardiolipin remodeling and the function of tafazzin, Biochim. Biophys. Acta, vol.1831, pp.582-588, 2013.

J. L. Jefferies, Barth syndrome, Am. J. Med. Genet C Semin. Med. Genet, vol.163, pp.198-205, 2013.

J. Dudek, Role of Cardiolipin in Mitochondrial Signaling Pathways, Front. Cell Dev. Biol, vol.5, p.90, 2017.

A. D. Rouillard, G. W. Gundersen, N. F. Fernandez, Z. Wang, C. D. Monteiro et al., The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins, Database, p.100, 2016.

B. Ma, Y. Chen, L. Chen, H. Cheng, C. Mu et al., Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase, Nat. Cell Biol, vol.17, pp.95-103, 2015.

F. Cabreiro, C. R. Picot, M. Perichon, J. Castel, B. Friguet et al., Overexpression of mitochondrial methionine sulfoxide reductase B2 protects leukemia cells from oxidative stress-induced cell death and protein damage, J. Biol. Chem, vol.283, pp.16673-16681, 2008.

D. Valenti, L. De-bari, B. De-filippis, A. Henrion-caude, and R. A. Vacca, Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: an overview of Down syndrome, autism, Fragile X and Rett syndrome, Neurosci. Biobehav. Rev, vol.46, pp.202-217, 2014.

L. Tiano and J. Busciglio, Mitochondrial dysfunction and Down's syndrome: is there a role for coenzyme, Biofactors, vol.37, issue.10, pp.386-392, 2011.

G. Pagano and G. Castello, Oxidative stress and mitochondrial dysfunction in Down syndrome, Adv. Exp. Med. Biol, vol.724, pp.291-299, 2012.

O. Ogawa, G. Perry, and M. A. Smith, The 'Down's' side of mitochondria, Dev. Cell, vol.2, pp.255-256, 2002.

J. Prince, S. Jia, U. Båve, G. Annerén, and L. Oreland, Mitochondrial enzyme deficiencies in Down's syndrome, J. Neural Transm. Park Dis. Dement. Sect, vol.8, pp.171-181, 1994.

E. Roat, N. Prada, R. Ferraresi, C. Giovenzana, M. Nasi et al., Mitochondrial alterations and tendency to apoptosis in peripheral blood cells from children with Down syndrome, FEBS Lett, vol.581, pp.521-525, 2007.

C. Piccoli, A. Izzo, R. Scrima, F. Bonfiglio, R. Manco et al., Chronic pro-oxidative state and mitochondrial dysfunctions are more pronounced in fibroblasts from Down syndrome foeti with congenital heart defects, Hum. Mol. Genet, vol.22, pp.1218-1232, 2013.

A. C. Phillips, A. Sleigh, C. J. Mcallister, S. Brage, T. A. Carpenter et al., Defective mitochondrial function in vivo in skeletal muscle in adults with Down's syndrome: a 31P-MRS study, PLoS ONE, vol.8, p.84031, 2013.

E. H. Aburawi and A. Souid, Lymphocyte respiration in children with Trisomy 21, BMC Pediatr, vol.12, p.193, 2012.

D. Valenti, G. A. Manente, L. Moro, E. Marra, and R. A. Vacca, Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway, Biochem. J, vol.435, pp.679-688, 2011.

D. Valenti, A. Tullo, M. F. Caratozzolo, R. S. Merafina, P. Scartezzini et al., Impairment of F1F0-ATPase, adenine nucleotide translocator and adenylate kinase causes mitochondrial energy deficit in human skin fibroblasts with chromosome 21 trisomy, Biochem. J, vol.431, pp.299-310, 2010.

N. Abu-faddan, D. Sayed, and F. Ghaleb, T lymphocytes apoptosis and mitochondrial membrane potential in Down's syndrome, Fetal Pediatr Pathol, vol.30, pp.45-52, 2011.

A. Izzo, M. Nitti, N. Mollo, S. Paladino, C. Procaccini et al., Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells, Hum. Mol. Genet, vol.26, pp.1056-1069, 2017.

J. Busciglio, A. Pelsman, C. Wong, G. Pigino, M. Yuan et al., Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down's syndrome, Neuron, vol.33, pp.677-688, 2002.

H. E. Lockstone, L. W. Harris, J. E. Swatton, M. T. Wayland, A. J. Holland et al., Gene expression profiling in the adult Down syndrome brain, Genomics, vol.90, pp.647-660, 2007.

T. Halevy, J. Biancotti, O. Yanuka, T. Golan-lev, and N. Benvenisty, Molecular characterization of down syndrome embryonic stem cells reveals a role for RUNX1 in neural differentiation, Stem Cell Rep, vol.7, pp.777-786, 2016.

J. L. Olmos-serrano, H. J. Kang, W. A. Tyler, J. C. Silbereis, F. Cheng et al., Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination, Neuron, vol.89, pp.1208-1222, 2016.

J. Jiang, Y. Jing, G. J. Cost, J. Chiang, H. J. Kolpa et al., Translating dosage compensation to trisomy 21, Nature, vol.500, pp.296-300, 2013.

P. Helguera, J. Seiglie, J. Rodriguez, M. Hanna, G. Helguera et al., Adaptive downregulation of mitochondrial function in down syndrome, Cell Metab, vol.17, pp.132-140, 2013.

C. Ripoll, I. Rivals, E. Ait-yahya-graison, L. Dauphinot, E. Paly et al., Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and Hedgehog pathways, PLoS ONE, vol.7, p.41616, 2012.

C. Li, L. Jin, Y. Bai, Q. Chen, L. Fu et al., Genome-wide expression analysis in Down syndrome: insight into immunodeficiency, PLoS ONE, vol.7, p.49130, 2012.

C. Y. Chou, L. Y. Liu, C. Y. Chen, C. H. Tsai, H. L. Hwa et al., Gene expression variation increase in trisomy 21 tissues, Mamm. Genome, vol.19, pp.398-405, 2008.

O. Altug-teber, M. Bonin, M. Walter, U. A. Mau-holzmann, A. Dufke et al., Specific transcriptional changes in human fetuses with autosomal trisomies, Cytogenet. Genome Res, vol.119, pp.171-184, 2007.

A. Conti, F. Fabbrini, P. D'agostino, R. Negri, D. Greco et al., Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy, BMC Genomics, vol.8, p.268, 2007.

R. Mao, X. Wang, E. L. Spitznagel, L. P. Frelin, J. C. Ting et al., Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart, Genome Biol, vol.6, p.107, 2005.

Y. Hibaoui, I. Grad, A. Letourneau, M. R. Sailani, S. Dahoun et al., Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21, EMBO Mol. Med, vol.6, pp.259-277, 2014.

E. Engidawork, T. Gulesserian, M. Fountoulakis, and G. Lubec, Aberrant protein expression in cerebral cortex of fetus with Down syndrome, Neuroscience, vol.122, pp.145-154, 2003.

M. S. Cheon, M. Fountoulakis, M. Dierssen, J. C. Ferreres, and G. Lubec, Expression profiles of proteins in fetal brain with Down syndrome, J. Neural Transm. Suppl, vol.61, pp.311-319, 2001.

T. Cabras, E. Pisano, C. Montaldo, M. R. Giuca, F. Iavarone et al., Significant modifications of the salivary proteome potentially associated with complications of Down syndrome revealed by top-down proteomics, Mol. Cell Proteomics, vol.12, pp.1844-1852, 2013.

K. D. Sullivan, D. Evans, A. Pandey, T. H. Hraha, K. P. Smith et al., Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation, Sci. Rep, vol.7, p.14818, 2017.

A. Chacinska, C. M. Koehler, D. Milenkovic, T. Lithgow, and N. Pfanner, Importing mitochondrial proteins: machineries and mechanisms, Cell, vol.138, pp.628-644, 2009.

J. E. Sylvester, N. Fischel-ghodsian, E. B. Mougey, and T. W. O'brien, Mitochondrial ribosomal proteins: candidate genes for mitochondrial disease, Genet. Med, vol.6, pp.73-80, 2004.

A. Niemann, M. Ruegg, V. La-padula, A. Schenone, and U. Suter, Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease, J. Cell Biol, vol.170, pp.1067-1078, 2005.

A. Amunts, A. Brown, J. Toots, S. H. Scheres, and V. Ramakrishnan, Ribosome. The structure of the human mitochondrial ribosome, Science, vol.348, pp.95-98, 2015.

D. F. Bogenhagen, A. G. Ostermeyer-fay, J. D. Haley, and M. Garcia-diaz, Kinetics and mechanism of mammalian mitochondrial ribosome assembly, Cell Rep, vol.22, pp.1935-1944, 2018.

K. Daily, V. R. Patel, P. Rigor, X. Xie, and P. Baldi, MotifMap: integrative genome-wide maps of regulatory motif sites for model species, BMC Bioinformatics, vol.12, p.495, 2011.

Z. Yang, K. Drumea, S. Mott, J. Wang, and A. G. Rosmarin, GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis, Mol. Cell Biol, vol.34, pp.3194-3201, 2014.

E. Lana-elola, S. D. Watson-scales, E. M. Fisher, and V. L. Tybulewicz, Down syndrome: searching for the genetic culprits, Dis. Model. Mech, vol.4, pp.586-595, 2011.

S. E. Antonarakis, R. Lyle, E. T. Dermitzakis, A. Reymond, and S. Deutsch, Chromosome 21 and down syndrome: from genomics to pathophysiology, Nat. Rev. Genet, vol.5, pp.725-738, 2004.

M. Garmhausen, F. Hofmann, V. Senderov, M. Thomas, B. A. Kandel et al., Virtual pathway explorer (viPEr) and pathway enrichment analysis tool (PEANuT): creating and analyzing focus networks to identify cross-talk between molecules and pathways, BMC Genomics, p.790, 2015.

Y. Li, S. Lim, D. Hoffman, P. Aspenstrom, H. J. Federoff et al., HUMMR, a hypoxia-and HIF-1alpha-inducible protein, alters mitochondrial distribution and transport, J. Cell Biol, vol.185, pp.1065-1081, 2009.

, , 2019.