, for the identification of efficacy of ?-caryophyllene 122 oxide, the safety evaluation showed no prohibited or restricted components. For safety reasons, 123 the in vitro 3T3 NRU phototoxicity test, 2004.

U. Atcc and A. Cl-173?, N° 130 P6110401, Lot. 09I006), low passage number (<50)

, Minimum Essential Medium, PAN BIOTECH. lot 1874561) supplemented with penicillin 100

. Iu/ml, At the end of the incubation period, the culture medium was decanted 136 and replaced by 100 µL of Hank's balanced salt solution (HBSS) containing the appropriate 137 concentrations of the test substance (eight different concentrations). Subsequently, cells were 138 incubated at 37°C (5% CO 2 ) in the dark for 60 min. From the two plates prepared for each 139 series of test substance concentrations and the controls, one was randomly selected for the 140 determination of cytotoxicity without irradiation (-Irr), and the other for the determination of 141 photo-cytotoxicity with irradiation (+Irr), The irradiation procedure was performed using a 142 solar simulator Suntest CPS+ apparatus (Atlas Material Testing Technology BV

. Neuf, France) equipped with a xenon arc lamp (1,100 W), a special glass filter restricting 144 transmission of light below 290 nm and a near IR-blocking filter. The irradiance was fixed at

, The Neutral Red medium was removed and destaining solution (50% ethanol, 1% acetic 152 acid, 49% distilled water; 50 µL per well) was added into each well. Then, the plates were

. Mongkalangoon, The mean OD value of blank wells (containing only Neutral Red desorbed 165 solution) was subtracted from the mean OD value of three treated wells (dilutions of the test 166 material, positive control or HBSS). The percentages of cell viability were calculated as: 313 has focused on potent synthetic compounds, Neutral Red without irradiation (IC 50 -Irr) and with irradiation, vol.314, p.320, 2009.

, Several plant-based essential oils have been evaluated for mosquito repellent activity 321 as protection against mosquitoes and other arthropod pests in Thailand

L. Ocimum and . Boonyuan, Vetiveria 323 zizanioides (L.) Nash (Vetiver), Syzygium aromaticum (L.) Merr. & L.M. Perry (Clove flower), and Zingiber 325 officinale Roscoe (Ginger), vol.324, 2014.

. Suwansirisilp, with insect behavior and growth, 2013.

. Tisgratog, The plant products have been effective as insect repellents or 330 insecticidal agents and one of the potential repellent compounds is ?-caryophyllene oxide 331, 2018.

. Fidyt, , 2005.

A. Odalo, Strong repellency against An. gambiae was also reported from a combination of 339 linalool, ?-caryophyllene oxide, ?-terpinene, and 1-methylpyrrole (45:39:8:8), and essential oil 340 of Croton pseudopulchellus Pax, Bhandari oil, obtained from leave parts, contains ?-caryophyllene oxide as one of its major 337 constituents and displays strong repellent activity against females of An. gambiae (Suleiman et 338, 2005.

. Fidyt, Administration (FDA) and the European Food Safety Authority (EFSA, 2016.

, The two most common plant-associated repellent compounds are p-menthane-3,8-diol (derived 347 from the Australian lemon-scented gum tree) and picaridin (a synthetic derivative of pepper)

. Zhu, The phototoxicity results obtained using the in vitro in mammalian cells. Likewise, the current study showed that ?-caryophyllene oxide 358 did not induce genotoxicity at the chromosomal level, 348 these have been tested for toxicity, 2009.

D. Sotto, Their results showed that the flavoring agent was 361 devoid of mutagenic effects, both at the gene level (frameshift or based-substitution mutations) 362 and on chromosomes, 2013.

. Nararak, 2017) reported that essential oils of citronella, vetiver, hairy basil, 366 and kaffir lime had good irritant and repellent effects on mosquito vectors compared to DEET. study showed that at higher concentrations (0.5 and 1.0%), ?-caryophyllene 371 oxide had significantly greater repellent and irritant effects compared to DEET, 2016.

, The results in contact and non-contact trials indicated that escape responses of 377 mosquitoes to the ?-caryophyllene oxide were significantly greater than with DEET, similar to 378 the previous study by, 2019.

, An. minimus presented the highest sensitivity to both types of escape responses (contact 386 irritancy and noncontact-spatial repellency) at 0.5-1% (v/v)

A. Dirus, Comparatively, DEET was less efficient than ?-caryophyllene oxide References

W. S. Abbott, A method of computing the effectiveness of an insecticide, J. Am, 1925.

, Mosq. Control Assoc, vol.3, pp.302-303

B. Amichai, A. Lazarov, and S. Halevy, , 1994.

, Dermatitis, vol.30, pp.188-189

E. Antignac, G. J. Nohynek, T. Re, J. Clouzeau, and H. Toutain, Safety of botanical 444 ingredients in personal care products/cosmetics, Food Chem. Toxicol, vol.49, pp.324-341, 2011.

V. Baimai, C. Green, R. Andre, B. Harrison, and E. Peyton, Cytogenetic studies of some 446 species complexes of, Anopheles in Thailand and Southeast Asia. Southeast Asian J, 1984.

, Trop. Med. Public Health, vol.15, pp.536-546

G. Benelli and H. Mehlhorn, Mosquito-borne Diseases: Implications for Public Health, 2018.

. Springer,

W. Boonyuan, J. P. Grieco, M. J. Bangs, A. Prabaripai, S. Tantakom et al., Excito-repellency of essential oils against an Aedes aegypti (L.) field 452 population in Thailand, J. Vector Ecol, vol.39, pp.112-122, 2014.

G. Briassoulis, M. Narlioglou, and T. Hatzis, Toxic encephalopathy associated with use 454 of DEET insect repellents: a case analysis of its toxicity in children, 2001.

, Toxicol, vol.20, pp.8-14

T. Chareonviriyaphap, P. Akratanakul, S. Nettanomsak, and S. Huntamai, Larval habitats 457 and distribution patterns of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), 2003.

, Thailand. Southeast Asian J. Trop. Med. Public. Health, vol.34, pp.529-535

T. Chareonviriyaphap, M. J. Bangs, and S. Ratanatham, Status of malaria in Thailand, 2000.

R. , Review of insecticide resistance and behavioral avoidance of vectors of 463 human diseases in Thailand, Parasites & vectors, vol.6, p.280, 2013.

T. Chareonviriyaphap, A. Prabaripai, and M. J. Bangs, Excito-repellency of deltamethrin 465 on the malaria vectors, Anopheles minimus, Anopheles dirus, Anopheles 466 swadiwongporni, and Anopheles maculatus, in Thailand, J. Am. Mosq. Control, vol.467, issue.20, pp.45-54, 2004.

T. Chareonviriyaphap, A. Prabaripai, and S. Sungvornyothrin, An improved excito-469 repellency test chamber for mosquito behavioral tests, J. Vector Ecol, vol.27, pp.250-252, 2002.

T. Chareonviriyaphap, D. Roberts, R. G. Andre, H. Harlan, S. Manguin et al., , 1997.

, Americas. J. Am. Mosq. Control Assoc, vol.13, pp.171-183

T. Chouin-carneiro, A. Vega-rua, M. Vazeille, A. Yebakima, R. Girod et al., , p.474

M. Dupont-rouzeyrol, R. Lourenço-de-oliveira, and A. Failloux, Differential 475 susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika 476 virus, PLoS Negl. Trop. Dis, vol.10, p.4543, 2016.

M. Debboun and D. Strickman, Insect repellents and associated personal protection for a 478 reduction in human disease, Bull. Entomol. Res, vol.27, pp.1-9, 2013.

C. Desgrouas, J. Nararak, R. Tisgratog, V. Mahiou-leddet, S. Bory et al., Comparative excito-repellency of three Cambodian 481 plant-derived extracts against two mosquito vector species, Aedes aegypti and 482 Anopheles minimus, J. Am. Mosq. Control Assoc, vol.32, pp.185-194, 2016.

D. Sotto, A. Maffei, F. Hrelia, P. Castelli, F. Sarpietro et al., 487 approaches. In Anopheles mosquitoes-New insights into malaria vectors. Manguin S, 2013.

E. Intechopen, , pp.671-704

, Skin-Applied Repellent Ingredients, EPA, 2019.

K. Fidyt, A. Fiedorowicz, L. Strz?da?a, and A. Szumny, ?-caryophyllene and 492 ?-caryophyllene oxide-natural compounds of anticancer and analgesic properties, 2016.

, Cancer Med, vol.5, pp.3007-3017

F. Garneau, G. J. Collin, F. Jean, H. Gagnon, and J. B. Arze, , p.495, 2013.

. Bolivia and . Xii, Asteraceae: Ophryosporus piquerioides (DC) Benth. ex Baker, J. Essent

, Oil Res, vol.25, pp.388-394

J. Gertsch, M. Leonti, S. Raduner, I. Racz, J. Chen et al., , p.498

M. Karsak and A. Zimmer, Beta-caryophyllene is a dietary cannabinoid, Proc, 2008.

, Natl. Acad. Sci, vol.105, pp.9099-9104

A. Gomes, N. Silva, G. Marques, and M. Brito, Host-feeding patterns of potential human 501 disease vectors in the Paraíba Valley region, State of Säo Paulo, Brazil. J. Vector 502 Ecol, vol.28, pp.74-78, 2003.

J. P. Grieco, N. L. Achee, T. Chareonviriyaphap, W. Suwonkerd, K. Chauhan et al., , p.504

M. R. Roberts and D. R. , A new classification system for the actions of IRS 505 chemicals traditionally used for malaria control, PLos One, vol.2, p.716, 2007.

M. B. Isman, Plant essential oils as green pesticides for pest and disease management, 2002.

, J. Am. Chem. Soc, vol.223, pp.668-669

T. G. Jaenson, K. Pålsson, and A. Borg-karlson, Evaluation of extracts and oils of 509 mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau, 2006.

T. Chareonviriyaphap, Excito-repellent activity of ?-caryophyllene oxide 536 against Aedes aegypti and Anopheles minimus, Acta Trop, vol.197, 2019.

J. O. Odalo, M. O. Omolo, H. Malebo, J. Angira, P. M. Njeru et al., Repellency of essential oils of some plants from the Kenyan coast against 539 Anopheles gambiae, Acta Trop, vol.95, pp.210-218, 2005.

, OECD Guidelines for the testing of chemical, vitro 3T3 NRU 541 phototoxicity test, vol.432, 2004.

C. Ohrt, T. D. Ngo, and T. Q. Nguyen, Preparing for the Next Global Threat: A Call for 544 Targeted, Immediate Decisive Action in Southeast Asia to Prevent the Next Pandemic 545 in Africa, Towards Malaria Elimination: A Leap Forward, 2018.

. Intechopen,

E. Patel, A. Gupta, and R. Oswal, A review on: mosquito repellent methods, Int. J, 2012.

. Pharm, Chem. Biol. Sci, vol.2, pp.310-317

G. Polanco-hernández, F. Escalante-erosa, K. García-sosa, and M. J. Chan-bacab,

H. Franco, J. González, L. Osorio-rodríguez, and L. M. Peña-rodríguez, , 2012.

, Metabolites from the leaf extract of Serjania yucatanensis with trypanocidal activity 552 against Trypanosoma cruzi, Parasitol. Res, vol.111, pp.451-455

D. R. Roberts, T. Chareonviriyaphap, H. H. Harlan, and P. Hshieh, Methods of testing and 554 analyzing excito-repellency responses of malaria vectors to insecticides, J. Am. Mosq, 1997.

, Control Assoc, vol.13, pp.13-17

R. Roesler, M. Lorencini, and G. Pastore, Susceptibility and avoidance behavior by Culex 560 quinquefasciatus Say to three classes of residual insecticides, J. Vector Ecol, vol.31, pp.266-561, 2006.

E. R. Shell, Atlantic Monthly. Resurgence of a deadly diseases, pp.45-60, 1997.

C. Smith, The history of dengue in tropical Asia and its probable relationship to the 564 mosquito Aedes aegypti, Am. J. Trop. Med. Hyg, vol.59, pp.243-251, 1956.

R. A. Suleiman, Q. A. Mgani, and S. S. Nyandoro, Chemical compositions and mosquito 566 repellency of essential oils from Artabotrys hexapetalus and Artabotrys rupestris, 2014.

, J. Biol. Chem. Sci, vol.8, pp.2804-2812

K. Suwansirisilp, S. Visetson, A. Prabaripai, S. Tanasinchayakul, J. P. Grieco et al., , p.569

T. Chareonviriyaphap, Behavioral responses of Aedes aegypti and Culex 570 quinquefasciatus (Diptera: Culicidae) to four essential oils in Thailand, J. Pest Sci, vol.86, pp.309-320, 2013.

W. Suwonkerd, W. Ritthison, C. T. Ngo, K. Tainchum, M. J. Bangs et al., Vector biology and malaria transmission in Southeast Asia, Anopheles 574 mosquitoes-New insights into malaria vectors, vol.573, 2013.

N. Tabanca, B. Demirci, A. Ali, Z. Ali, E. K. Blythe et al., Essential oils of 576 green and red Perilla frutescens as potential sources of compounds for mosquito 577 management, Ind. Crop. Prod, vol.65, pp.36-44, 2015.

K. Tainchum, M. Kongmee, S. Manguin, M. J. Bangs, and T. Chareonviriyaphap, , 2015.

, Anopheles species diversity and distribution of the malaria vectors of Thailand, vol.582, p.583, 2019.

, Acta Trop, vol.190, pp.183-192

C. Tananchai, R. Tisgratog, W. Juntarajumnong, J. P. Grieco, S. Manguin et al., , p.585

T. Chareonviriyaphap, Species diversity and biting activity of Anopheles dirus 586 and Anopheles baimaii (Diptera: Culicidae) in a malaria prone area of western 587 Thailand, Parasites & vectors, vol.5, p.211, 2012.

T. Telang, S. Awasthy, and V. Oswal, Qualitative improvement of the essential oil of 589 Chloroxylon swietenia (Roxb. corom). Indian Perfum, vol.47, pp.79-82, 2003.

K. Thanispong, N. L. Achee, M. J. Bangs, J. P. Grieco, W. Suwonkerd et al., , p.591

T. Chareonviriyaphap, Irritancy and repellency behavioral responses of three 592 strains of Aedes aegypti exposed to DDT and alpha-cypermethrin, J. Med. Entomol, vol.593, pp.1407-1414, 2009.

R. Tisgratog, U. Sanguanpong, J. P. Grieco, R. Ngoen-kluan, and T. Chareonviriyaphap, 595 Plants traditionally used as mosquito repellents and the implication for their use in 596 vector control, Acta Trop, vol.157, pp.136-144, 2016.

R. Tisgratog, C. Sukkanon, J. P. Grieco, U. Sanguanpong, K. R. Chauhan et al., , p.598

T. Chareonviriyaphap, Evaluation of the Constituents of Vetiver Oil Against 599 Anopheles minimus (Diptera: Culicidae), a Malaria Vector in Thailand, J. Med, 2018.

. Entomol, , vol.55, pp.193-199

Y. Trongtokit, Y. Rongsriyam, N. Komalamisra, and C. Apiwathnasorn, Comparative 602 repellency of 38 essential oils against mosquito bites, Phytother. Res, vol.19, pp.303-309, 2005.

, World malaria report 2018. World Health Organization, WHO, pp.604-165, 2018.

V. Wiwanitkit, Concurrent malaria and dengue infection: a brief summary and 606 comment, Asian Pac. J. Trop. Biomed, vol.1, pp.326-327, 2011.

Y. C. Yang, H. S. Lee, S. H. Lee, J. M. Clark, and Y. J. Ahn, Ovicidal and adulticidal 608 activities of Cinnamomum zeylanicum bark essential oil compounds and related 609 compounds against Pediculus humanus capitis (Anoplura : Pediculicidae), Int. J, 2005.

. Parasitol, , vol.35, pp.1595-1600

J. Zhao, X. Zheng, R. A. Newman, Y. Zhong, Z. Liu et al., Chemical composition 612 and bioactivity of the essential oil of Artemisia anomala from, China. J. Essen. Oil 613 Res, vol.25, pp.520-525, 2013.

J. Zhu, X. P. Zeng, D. Berkebile, H. J. Du, Y. Tong et al., Efficacy and safety of 615 catnip (Nepeta cataria) as a novel filth fly repellent, Med. Vet. Entomol, vol.23, pp.209-216, 2009.

. C=contact, NC=non-contact; Esp= escaped mosquitoes; NE= Non escape mosquitoes

, § Positive controls: mitomycin C (0.05 µg.mL -1 ) without S9 mix and benzo

, mL -1 ) with S9 mix; MNC: Micronucleated cells per 1,000; P: Probability of the comparison 637 between the negative control and the tested dose using the Chi-squared test

, NS: non-significant activity

, 25%: (A) Ae. to ?-caryophyllene oxide and DEET at 1%: (A) Ae. albopictus, 655 (B) An. dirus, DEET at 0